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Introduction 
 

In the twentieth and twenty-first centuries, the warming of the global climate system 

global is becoming increasingly obvious and further warming is expected. This warm-

ing is accompanied with changing precipitation conditions, causing more frequent and 

more serious natural disasters, which lead to financial and environmental losses (IPCC 

2007). This climate change has significant effects on the natural environment. Large 

number of investigations have demonstrated, that the actual changes of the temperature 

and precipitation take significant effects on all factors of the environment, thus they 

can alter the rate of the geomorphologic processes (DIKAU – SCHROTT, 1999), soil 

erosion (MUNKA et al., 2007), living condition of the vegetation (RITCHIE, 1986; 

FLANNIGAN et al., 2000) etc. Therefore, a comprehensive knowledge of these effects is 

essential to mitigate their unwanted consequences. At present the most suitable method 

to analyse the future climate change is probably the application of regional climate 

models. There are several different regional climate models available and four of them 

(ALADIN, REMO, PRECIS, RegCM) are already tested and applied for the Carpa-

thian Basin.The extremity of the climate became more and more pronounced also in 

the Carpathian Basin in the last decades and it is expected that in the future decades 

this tendency will persist. The models predicted a continuous, inconstant temperature 

increase, with the most intense increase occurring in the summer months (the rate of 

change is similar to that experienced between 1980 and 2010). The change in yearly 

precipitation in the models was not significant; however, the distribution of precipita-

tion within a year is expected to be more heterogeneous, with decreasing summer and 

increasing winter precipitation (BARTHOLY et al., 2008; SZABÓ et al., 2011; CSORBA et 

al., 2012). Climate simulations show that extreme climate events may occur more fre-

quently in the Carpathian Basin over the next century and that more prolonged and 

severe hot and dry periods are expected (SZÉPSZÓ, 2008). 

This research therefore investigates the effects of changing weather extremes on 

meso-regional-scale landscape vulnerability.Climatic-exposure parameter analysis was 

performed on a predicted climate change scenario. Soil erosion caused by water, 

drought, soil erosion caused by wind, mass movement and flash floods were analysed 

for the time periods of 1961–1990, 2021–2050 and 2071–2100. 
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Methods 
 

Determination of the landscape units 
 

The traditional landscape micro-regions (PÉCSI – SOMOGYI, 1967) were defined by 

using the geomorphologic characteristics of the landforms for the regional and local 

typifications. However the regional climatic models used in this study did not include 

enough data for a micro-region scale anaylisis. Therefore, it was practical to analyse at 

the aggregated hierarchical level of meso-scalic landscape units.  

In the analysis 18 landscape units were defined, because the analysis of the 230 tra-

ditional, environmentally homogeneous micro-regions of Hungary was not possible due 

to the resolution of the climate data (Fig. 1). The areas of the defined units are better 

suited not just to the resolution of the climate data, but the demands of spatial planning. 

The determination of the landscape units was based on the spatial diversity of landscape 

shaping factors (relief, soil, geology, vegetation, land use and climate). In some cases the 

borders of the units were also fitted to the border of larger natural landscape units (e.g., 

micro-regions along the middle and lower sections of the Tisza River) and economic 

regions (e.g., central Hungary), where the border was justified by the climate dependence 

of the land use. Thus the physical parameters are relatively homogeneous in the units; 

therefore, any climate change affects the entire unit in more or less the same way. An 

analysis on this scale can be important for the recognition of probable future climate 

effects and in the preparation of strategic spatial plans. 

 
Fig. 1. The examined landscape units  

1. ábra. A vizsgált tájesgységek 

 

Calculation of the climate data 
 

It is difficult to sketch a valid picture of climate change for the entire area of Hungary. 

Scaling down tendencies is hindered by several factors. One initial basic problem was 

the choice of the climate change scenario to be considered (IPCC, 2007; BARTHOLY – 

PONGRÁCZ, 2010). Another essential aspect is the selection of the regional climate 

change model. The available models are different in the resolution of the data and also 

in the basic model assumptions. In Hungary four regional models (ALADIN, REMO, 

PRECIS, RegCM) were run and tested, and REMO and ALADIN models seemed the 

most reliable for Central Europe. Therefore the expected future changes of the climate 
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parameters were analysed using two regional climate models, REMO and ALADIN. 

The models utilise the A1B scenario, which represents the average changes of green-

house gas emissions, to model anthropogenic climate forcing. The A1B scenario de-

scribes an integrated world with rapid economic growth, slowing population increases, 

a quick spread of new and efficient technologies and a balanced emphasis on all energy 

sources. The resolution of the climate data was 0.22’ (approximately 25 km). The cli-

mate projections were generated by the Numerical Modelling and Climate Dynamics 

Division of the Hungarian Meteorological Service. 

For the calculations daily temperature and precipitation data for the periods from 

2021–2050 and 2071–2100 were used. The temperature and precipitation changes are 

expressed in °C and mm, respectively, with respect to the reference period of 1961–

1990. The following changes in the extreme climate indices were also generated from 

the two models: frost days in days/year; summer days (Tmax>25 °C) in days/year; heat 

waves (Tmean>25 °C) in days; extremely heavy precipitation days (Rday≥20 mm and 

Rday≥30 mm), in days/year; and the simple daily intensity index (SDII), which is a 

measure of the precipitation amount per rainy day, Rday≥1 mm, in mm/day. From all of 

these data, average yearly data were calculated and average monthly data from precipi-

tation and temperature data were calculated and evaluated for the two study periods for 

each grid point. Regional average values were calculated for the landscape units based 

on the climate parameters at each grid point. 

 

Results 
 

Meso scale change of climate on the basis of REMO and ALADIN models 
 

The yearly mean temperature is expected to increase on every landscape units by 1.2–2 

°C for the period of 2021–2050 and by 3.4–3.7 °C for the period of 2071–2100 com-

pared to the reference period of 1961–1990. Because of the small area of the country, 

there are only slight spatial differences in the future changes of the temperature, based 

on the models. However a characteristic trend like increase can be observed from 

north-west to south-east (Fig 2). 

On the basis of the separate analysis of the winter and summer half years, it can be 

observed that the spatial pattern of the changes in the mean temperature is the same as 

in the case of  the yearly mean, however the increase in the summer half year (1.6–2.1 

°C in the period of 2021–2050 and 3.8–4.2 °C in the period of 2071–2100) is expected 

to be higher than in the winter half year (1.2–1.4 °C in the period of 2021–2050 and 

2.9–3.1 °C in the period of 2071–2100) on all landscape units. 

In case of the changes of temperature extremes, it can be saw that the number of 

summer days and heat waves are expected to increase, while the number of frost days 

is expected to decrease on all landscape units. The spatial differences in the country are 

higher than in case of mean temperature. Particularly this spatial difference is distinc-

tive in case of the heat waves. The average of the two models shows that the changes 

of the number of heat waves and the number of frost days is expected to increase from 

north to south in the period of 2071–2100. The increase of the number of summer days 

however will be more and more higher from south to north (Fig. 4). 

There are more distinct spatial differences in the changes of the yearly precipita-

tion sum. The difference between the minimum and maximum value on the landscape 
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units is approximately 90 mm in the modelled periods. Moreover, on some landscape 

units, the direction of the changes is also different. The spatial pattern of the precipita-

tion change is similar to the changes of the mean temperature; as it will slightly in-

crease on the north-western part of the country and the highest precipitation decrease 

can be observed on the south-eastern part of the country (Fig. 3). 

On the basis of the separate analysis of the winter and summer half years, sig-

nificant difference can be detected between the two half year. In the summer half 

year slight increase is expected on the north-western part while on the south-eastern 

part slight decrease is predicted for the period of 2021–2050. For the period of 2071–

2100 precipitation decrease is expected on all landscape units, but with different rate 

((-59) – (-20) mm). However in the winter half year the precipitation change will be 

negligible (less than 10 mm) on all landscape units for the period of 2021–2050. For 

the period of 2071–2100 the winter precipitation will increase by 25–46 mm on the 

units. 

The number of days with extremely high precipitation is expected to increase in 

the whole country; however the rate is significantly diverse on the landscape units. On 

the basis of the average of the two models the rate of changes in case of the days with 

more than 20 mm precipitation is varied between 0.2 and 1.4 days for the period of 

2021–2050 and between 0.7 and 2.7 for the period of 2071–2100. I case of the days 

with more than 30 mm precipitation the increase is varied between 0.6 and 1.1 days for 

the period of 2021–2050 and between 0.9 and 1.5 for the period of 2071–2100. Typical 

spatial pattern can also be detected, as rate of change is predicted to be the highest on 

the western part and it decrease toward east and the smallest values are expected on the 

Great Hungarian Plain. The value of precipitation intensity index is expected to in-

crease slightly on all landscape units in bothe modelled periods (Fig. 5). 

 

Differences in the model predictions 
 

Between the projections of the two applied models significant differences can be de-

tected. The most uncertain part of the climate prediction is the precipitation change 

projection, thus the highest differences between the two models can be identified in 

case of this parameter. On several landscape units the tendency of the changes are also 

different. For the period of 2021–2050 the differences are slighter. Different direction 

of the changes is occurred only on the central and north-eastern part of the country. For 

the period of 2071–2100 the differences between the models are more significant. For 

this period the ALADIN model indicate decreasing precipitation for all landscape 

units, while REMO projects precipitation decrease only for 3 landscape units (Nyírség 

és Hajdúság, Alföld központi része, Körös–Maros köz) on the south-east part of the 

country (Fig. 6). The rate of precipitation change is also different in the models. The 

maximum difference was occurred on the western part, while the minimum difference 

was experienced on the on the south-east part of the country in both periods. The pre-

diction of temperature change is more similar in the models, the spatial pattern of the 

changes are similar, just the rate of the changes are somewhat higher on the basis of 

ALADIN model for the period of 2021–2050. For period of 2071–2100 the rate of 

changes are also similar. 

The projection of climate extremities is also different. In projection of changes of 

summer days more significant differences can be observed for the period of 2021–2050 
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than for the 2071–2100 period. In the first period REMO indicate significantly smaller 

changes on the northern part of the country, but these differences is diminished until 

the end of the 21
th
 century (Fig. 7). 

 

Distinguishing Climate-Region Types for Hungary 
 

The REMO and ALADIN simulations have provided results that show differences in 

certain regions (particularly in the east and south), depicting the uncertainty range by 

applying different climate models. Multivariate statistical analysis and classification have 

been performed considering the climate change trends in the Hungarian climate regions 

and including the uncertainty range of the model simulations. The objective was to dis-

tinguish the region types with similar climate change characteristics. The landscape di-

versity in Hungary is relatively narrow, distinguishing the climate regions was a some-

what challenging task that was performed by applying factor and cluster analyses (LOIBL 

–  AUBRECHT, 2011). Factor analysis was used for reducing the number of variables and 

generating a few distinct and integrated “super indicators” out of (via factor loadings) 

weighted input variables – the factor coefficients. Cluster analysis was used to group the 

Hungarian regions by the climate characteristics of the current and future climate by 

applying multivariate statistics. To conduct the clustering task, climate and climate-

change indicators were extracted from raster sets of precipitation, temperature and ex-

treme-event indicators by averaging the indicators for the 18 Hungarian meso-regions.  

Finally, the factor analysis results were obtained for the temperature and precipitation 

data subsets individually. The temperature subsets contain absolute numbers for the 

current and future temperature (the regional average and range within the region) and 

the averages of frost days (<=0°C Tmin) and summer days (>25°C Tmax) by scenario 

version. The precipitation subsets contain current and future rainfall absolutes (totals 

and range within the regions), the numbers of extreme rainfall days (>20 mm and >30 

mm per day), and the average daily rainfall sum on precipitation days (>1 mm) by sce-

nario. The factor analyses deliver the factor coefficients for the meso-regions as “su-

per-indicators”. The coefficients of those factors whose eigenvalues explain more than 

10% of all variables’ variance (usually 2 factors per analysis) were selected. These 

factor coefficients of the few important factors describe the current and future climates 

from the ALADIN and REMO scenario results.  

Using those factor coefficients, cluster analyses were performed with alternative link-

age approaches and metrics to identify the regions of similar characteristics by detecting 

the natural groupings in the data. Hierarchical clustering, which records the tightness of 

linkages between the factor coefficients by observing the similarity or “distance” between 

the values by (region) case, is typically applied. Several distance metrics and linking meth-

ods are available with hierarchical clustering. Ward’s linkage method was applied, which 

averages all the distances between pairs of objects in different clusters, with adjustments 

for the covariance, to determine how far apart the clusters are. As a distance metric, the 

normalised Euclidean distance (root-mean-squared distance) was used.  

The cluster analysis results that are ultimately selected to delineate the climate re-

gions are based on the factor coefficients of the 2 highest factors of the 4 different factor 

analyses for the temperature and the precipitation considering the scenario results for 

2021–2050 and 2071–2100 and integrating the temperature and precipitation ranges of 

the meso-regions. The overall cluster analysis produced 4 climate regions in the country: 
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Fig. 2. Changes of mean temperature (°C) in 2021–2050 and 2071–2100 periods, 

based on the average value of REMO and ALADIN models  

2. ábra. Az évi átlaghőmérséklet változása a két modell átlaga alapján 2021–2050 és 

2071–2100 időszakokban 

 

Fig. 3. Changes of mean precipitation (°C) in 2021–2050 and 2071–2100 periods, 

based on the average value of REMO and ALADIN models  

3. ábra Az évi átlagos csapadék változása a két modell átlaga alapján 2021–2050 és 

2071–2100 időszakokban 

 

Fig. 4. Changes of extreme temperature indices (day/year) in 2071–2100 period, based 

on the average value of the REMO and ALADIN models  

4. ábra Hőmérsékleti extrém napok számának változása a két modell átlaga alapján 

2071–2100-ig 

 

Fig. 5. Changes of extreme precipitation indices (day/year) in 2071–2100 period, 

based on the average value of the REMO and ALADIN models  

5. ábra. Csapadék extrém napok számának változása a két modell átlaga alapján 

2071–2100-ig 
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Fig. 6. The tendency of precipitation change on the landscape units: -1 both models 

indicate decreasing precipitation; 0 models show different direction of the changes; 1 

both models indicate increasing precipitation  

6. ábra. A csapadékváltozás iránya a tájegységeken: -1: mindkét modell szerint csök-

ken a csapadék; 0: a két modell ellentétes változást jelez; 1: mindkét modell szerint nő 

a csapadék 

 
Fig. 7. Increase of the number of summer days on the landscape units, based on REMO 

and ALADIN models 

7. ábra. Nyári napok számának növekedése az Aladin és REMO szerint  

 
Fig. 8. Regions of similar characteristics of the all climate partameters 

8. ábra. Eltérő klímaváltozási típusú régiók 
 

The first region type is located along a west central corridor ranging from north to 

south. Moderate temperature increase and more distinct changes in temperature ex-

treme events are characteristic. The precipitation totals are moderate; the future pre-

cipitation increase is expected at higher rates but with moderate changes in extreme 

rainfall events. The second region type covers the northeastern regions along the Slo-

vakian border.  This region has the lowest annual mean temperatures and the highest 

intraregional temperature variation. Moderate recent precipitation totals and moderate 



32 

future increase is typical with moderate increase of the extreme event days. The third 

region type is more or less the Hungarian Great Plain, without the Nyírség region. 

This region is characterised by a flat topography and it has the highest temperatures 

and the lowest annual precipitation totals. The highest temperature increase and great-

est changes in extreme temperature events (increase of summer days and decline of 

frost days) with the highest precipitation decline rations (or at least lowest precipitation 

increase ratios) and an increase of heavy rainfall days is predicted.  

The fourth region type covers only 2 regions in the western hilly area. This type is 

characterized by lower temperatures, less temperature increase and less change in tem-

perature extremes. The type is expected to be more humid, with higher precipitation 

totals but smaller precipitation change ratios and smaller change rates regarding heavy 

rain events (Fig. 8).  

 

Investigations of the landscape sensitivity in Hungary due to climate change assess-

ments of landscape hazards 
 

In order of their actual importance in Hungary, the following natural processes were con-

sidered during the analysis: soil erosion by water, droughts, soil erosion by wind, flash 

floods and mass movements. These processes represent the most important environmental 

hazards for land use in Hungary (SZABÓ et al., 2008). Following these processes, a number 

of landscape function-based sensitivities have been spatially assessed using predictive 

models and diverse geo-data from multiple sources. The main aims were (1) the examina-

tion of the current situation of the indicators on the regional scale for Hungary and (2) the 

assessment of the changes of climate parameters predicted by REMO and ALADIN mod-

els and typified by cluster analysis in the sensitivity assessments. 

Soil erosion by water considers the physical soil degradation processes at today’s 

largest spatial extent in Hungary. The erosion sensitivity was calculated on a micro-

regional scale following the Universal Soil Loss Equation (USLE) of WISHMEIER – 

SMITH (1978) adapted for Hungary by PATAKI (2000) and KERTÉSZ – CENTERI (2006). 

The parameters determining the soil sensitivity (K), length of slope (L), and steepness 

(S) are relatively stable; the rainfall erosivity factor (R) has the closest link to climate 

change. The vegetation and crop factor (C) and the measures against erosion (P) have a 

high degree of unpredictability because of changing land-use systems and also due to 

potential protective adaptive measures in the future. In our modelling example, the 

average RR30 value in the winter half-years was used for the calculations of extreme 

rainfall events (the RR30 values were calculated from REMO and ALADIN model). 

Drought is a severe natural hazard that causes extensive damage in the Carpathian 

Basin. In this study the current probability of drought occurrence in the landscape units 

was analysed by using the PaDI. The present-day conditions were compared with the 

tendencies due to climate change. The sensitivity map was developed using the Pálfai 

Drought Index (PaDI). The PaDI0 index uses monthly temperature and precipitation data 

(PÁLFAI – HERCEG, 2011). The drought hazard changes induced by climate change was 

estimated by the regional types of climate change resulted from the cluster analysis.  

Wind erosion in the Carpathian Basin has also an effect on the degradation of ara-

ble soils. The wind erosion sensitivity is primarily determined by the texture of the soil. 

The characteristic yearly average wind velocities close to the surface are 3 m/s in Hun-

gary, though the values are 15–20% higher in the NW and central parts of the basin. 
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Wind erosion sensitivity map of the country was produced after the potential wind 

erosion hazard map, created by LÓKI (2011), and the future climate was linked to the 

regional types of climate changes, resulted from the cluster analysis. 

Flash flooding is also one of the most frequent hazards in Hungary (CZIGÁNY et 

al., 2010; ESTRELA et al., 2001). During the analysis a flash flood sensitivity map was 

created. This map was produced by overlapping analysis using the relief, texture of the 

surface sediment and the proportion forest covering on the more than 800 minor water-

sheds, which are most likely affected by flash floods. The climatic parameter that was 

taken as the climatic-exposure climate change for the flash-flood prediction is the fre-

quency of the extreme precipitation events higher than 30 mm (SZÉPSZÓ, 2008).  

Mass movement sensitivity map was produced according to their present-day ac-

tivity by using the recorded information about recent significant landslide events 

(JUHÁSZ, 2004; FODORNÉ – KLEB, 1986). The endangered areas are in the mountain-

ous and hilly regions where the natural conditions, geology, the granulometric type of 

the sediment, relief and the actual precipitation are able to mobilise the sediment, Hilly 

regions with only ancient quaternary mass movement have not been considered. The 

future changes of mass movement hazard was estimated by this present day conditions 

and the climate change The relevant climatic parameter in this case is the sum of the 

precipitation in the winter season.  

 

Summarized sensitivity assessment 
 

The sensitivity was assessed by using the threshold values for the classification of the 

hazard for each of the indicators in the sensitivity classes of the regional landscape in 

qualitative terms of low/tolerable (class 1), increased (class 2) and high (class 3). The 

usage of qualitative classes is a standard procedure for an equal-weighted integration of 

different factors in impact assessment. The applied method is simple because the un-

certainty of the models (climatic and hydrological) and the limited amount of verifica-

tion does not enable highly precise calculations. Practically, a matrix-based assessment 

was made to link the climatic exposure of the region to its sensitivity to the problemat-

ic processes. An integrative analysis of the five sensitivity assessments of the land-

scape functional hazards in Hungary due to climate change is summarised in the Fig-

ures 9 and 10. The figures show the expected climate change impact on two levels of 

interpretation: (1) by the number of indicators changed for the scenarios for Hungary 

for the periods of 2021–2050 and 2071–2100 compared to the 1961–1990 period (out 

of the maximal 5 investigated in this study); and (2) the summarised value of the haz-

ard on the meso-regions, which shows the increasing sensitivity on a scale from 5 (very 

low) to 15 (very high). The highest problematic values in the processes are found in the 

Marcal Basin and Komárom plain in the northwest of Hungary for the first (and se-

cond) period when summarising all the sensitivity indicators. In this region, the actual 

processes are very active (MEZŐSI et al., 2012).  

These changes in the hazard are probably not imply severe, human life-threatening 

risks (TOBIN – MONTZ, 1997), however the slow, but long-lasting changes of the environ-

mental processes can increase the vulnerability and can generate serious environmental 

problems (e.g. drought). These results somewhat contradict the findings of SZABÓ et al., 

(2008), because they found that the environmental hazard is the highest in the southeast 

region of the country, while it is lower in the northwestern part of the country.  
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Fig. 9. The number of hazard class changes in the indicators and the additive sensitivi-

ty assessment of the meso-regional hazard for 2021–2050 scenarios compared to peri-

od 1961–1990 for Hungary 

9. ábra. A veszélyességi értékek változása a 2021–2050 es éghajlati adatok alapján, 

középtáji egységenként (az 1961–1990-es adatokhoz képest) 

 

Fig. 10. The number of hazard class changes in the indicators and the additive sensi-

tivity assessment of the meso-regional hazard for 2071–2100 scenarios compared to 

period 1961–1990 for Hungary 

10. ábra. A veszélyességi értékek változása a 2021–2050 és 2071–2100-es éghajlati 

adatok alapján, középtáji egységenként (az 1961–1990-es adatokhoz képest) 
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This is mainly caused by that in contrast with SZABÓ et al. (2008) the flood prob-

lem was not included into our analysis because the increase in this process is not pri-

marily a consequence of the climate impacts (influencing factors are the capacity of 

water-deduction of the floodplain, the land use of the catchment, and the construction 

of dams in the upper section), and the floods are difficult to predict in Carpathian Basin 

at a regional scale without an enclosure of the surrounding mountains.  

 

Conclusion 
 

The foreknowledge of expected changes in the future climate and in the associated 

environmental system can be more and more important for creating future planning 

strategies. Therefore the aim of this research was to describe the potential conse-

quences of the expected climate change on the landscapes. Using the data of REMO 

and ALADIN models connection was built up between the relevant climate parameters 

and the changing occurrence and intensity of the important environmental processes. 

On the basis of the climate models, despite the small area and the relatively low topog-

raphic diversity of the country, the two climate simulations showed spatial differences 

in the parameters. Four regions in Hungary with different climate change tendencies 

were defined by a cluster analysis based on the temperature, precipitation and ex-

treme indices. In these regions, the climate change tendencies indicated diverse al-

terations of the social and ecological systems. 

As a result of the sensitivity assessment the most vulnerable regions of the country 

could be defined. This information can promote the development of optimal spatial 

planning strategies to create more optimal land and water management, which can 

mitigate the consequences of climate change at the national, regional and local levels. 

This hazard projection has several uncertainties. The most important uncertainties 

are the lack of verification and an accurate definition of the error. Further uncertainty is 

associated with the A1B scenario, as the projected data are only valid for a definite 

socio-economic development path. Despite these limitations, the present data set and 

analysis of the smaller units can provide valuable data for several sectors of society, 

including the economy, as the analysis can highlight the critical areas.  
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AZ ÉGHAJLATVÁLTOZÁS TERÜLETILEG RÉSZLETESEBB 

FELBONTÁSÚ ELŐRE VETÍTÉSE ÉS NÉHÁNY KÖVETKEZMÉNYE 

A KÁRPÁT-MEDENCÉBEN 

 

Bevezetés 

 

Az éghajlati rendszer melegedésének ténye napjainkra elfogadottá vált, s a jövőben 

jelentős mértékű felmelegedés alakulhat ki, ami együtt jár a csapadékviszonyok meg-

változásával és gyakoribb, súlyosabb károkat okozó szélsőséges éghajlati jelenségek-

kel, melyeknek jelentős természeti, társadalmi-gazdasági következményei lehetnek 

(IPCC 2007). 

A regionális éghajlati változások sok természeti rendszerre vannak hatással, ezért 

a klíma várható jövőbeni alakulásának ismerete számos területen jelent segítséget. Erre 

jelenleg a legalkalmasabb módszer a klíma modellek alkalmazása. 

A kutatás célja, hogy a Kárpát-medencében a modellek alapján egy évszázadra 

előre vetíthető éghajlati változásokat olyan környezetileg egységesebb felbontási alapra 

vonatkozóan mutassuk be, amely területegységek aztán – figyelemmel az időinterval-

lumokra is – lehetővé teszik a környezeti szempontból kritikus felszínalakulásokra, ill. 

az ott ható folyamatokra a figyelem felhívását. További célunk, hogy megállapítsuk, 

mely időjárási elemek milyen földfelszíni folyamatokat, jelenségeket fognak olyan 

mértékben befolyásolni, amely az adott tájegység működésében várhatóan lényeges 

változásokkal fog járni. Az elemzésbe öt tájműködési indikátort vontunk be: a talajeró-

ziót, a deflációt, az aszályt, a villámárvizeket és a lejtős tömegmozgásokat. 

 

Módszerek 

 

A részletes klimatikus adatok területi sűrűsége, valamint azok tervezési, környezeti 

használata miatt kézenfekvőnek tűnt a középtájaknál kisebb, de a kistájaknál nagyobb 

egységekre megadni ezen adatokat. A 230 természeti és környezeti menedzsment 

szempontból is hasonló kistáj jellemzését az adatsűrűség nem tette lehetővé. Így 18 

területi egységet, egyfajta, nem egymásra épülő mezorégiót határoztunk meg. Ezek 

kialakítása a domborzati, talaj, klíma és felszínborítási tulajdonságok hasonlósága alap-

ján történt. 

Az elemzés során a klimatikus paraméterek változását a REMO és az ALADIN 

modellek alapján számítottuk. A klíma adatok előállítása az OMSZ-nál történt. Az 

adatok felbontása 0.22°. A két modellből számított, 25 km-es felbontású rácsponti ada-

tokból [napi hőmérséklet (T): °C, napi csapadék (P): mm, nyári napok szám (SU): 

nap/év, fagyos napok száma (FD): nap/év, extrém csapadékú napok száma (20 mm 

feletti csapadék – RR20): nap/év, 0 mm feletti csapadék (RR30): nap/év, csapadékin-

tenzitási index (SDII): mm/nap] a két modellezett időszakra (2021–2050 és 2071–

2100) évi átlagos értékeket számítottunk. Emellett a napi hőmérséklet és csapadékada-

tokhoz féléves átlagokat is számítottunk, mivel így az éven belüli változások jobban 

elemezhetőek. A hömérséklet eltérése az 1961–1990-es bázis adatoktól °C-os eltérés-

ben, a csapadékadatok mm-es eltérésben mérve. A rácsháló pontjaira kiszámított átlag-

adatokból a lehatárolt tájegységekre területi átlagot képeztünk.  
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Eredmények 
 

Mezo léptékű klímaváltozás az ALADIN és REMO modellek alapján 
 

Az évi középhőmérséklet valamennyi tájegységen növekszik az 1961-1990 időszakhoz 

viszonyítva a két modell alapján  2021–2050-ig 1,2–2 °C-kal, míg 2071–2100-ig 3,4–

3,7 °C-kal. Az ország kis területéből adódóan a hőmérsékletváltozásban nagy regioná-

lis különbségeket nem jeleznek a modellek, ennek ellenére megfigyelhető egy fokozatos 

északnyugat–délkeleti irányú növekedés.  

A hőmérsékleti szélsőségekre jellemző, hogy a nyári napok és száma növekszik, a 

fagyos napok száma viszont csökken. Itt az évi középhőmérsékletnél valamelyest na-

gyobb eltérések vannak az országon belül, a leginkább a hőhullámok számának növe-

kedésében lévő különbségek számottevőek. A két modell átlaga alapján 2071–2100-ig 

északról dél felé haladva növekvő mértékben növekszik a hőség napok és csökken a 

fagyos napok száma. A nyári napok esetében észak felé haladva egyre nagyobb a nö-

vekedés mértéke. 

A csapadékmennyiség változásnál az országon belül térben sokkal jelentősebb kü-

lönbségek vannak. A tájegységek közötti különbség mértéke eléri az évi 90 mm körüli 

értéket a modellezett időszakokban, sőt az ország különböző tájegységein a változás 

iránya sem azonos. Az évi csapadékváltozásra a hőmérséklet-változáshoz hasonló tér-

beli mintázat jellemző, de ellentétes előjellel, ugyanis megfigyelhető egy fokozatos 

északnyugat–délkeleti irányú csökkenés. 

Az extrém csapadékú napok számok száma az országban mindenütt növekszik, 

mértéke azonban a tájegységek között jelentősen különbözik. A változásnál a jellegze-

tes térbeli mintázat itt is megfigyelhető, az extrém csapadékú napok számának növeke-

dése nyugaton a legnagyobb és kelet felé csökken, a legkisebb növekedés az alföldi 

tájegységeken várható 

 

Klímaváltozási típusok a tájegységekre 
 

Az modellezés eredményeképpen nagy mennyiségű – a 2. pontban bemutatott – napi és 

havi adat állt elő.  Az egyveretű környezeti feltételek és kis terület miatt nem kaptunk 

olyan nagy eltéréseket tartalmazó adatsort, amellyel a klímaváltozást részletesebb – 

mezoléptékben – jellemezhettük volna. Az alkalmazott modellek számos esetben eltérő 

mértékű és irányú változást prognosztizáltak. A változási trend kiszűrésére ezért al-

kalmaztunk klaszter-elemzést, amellyel változás regionálisan eltérő irányát kíséreltük 

meg azonosítani.  

A klaszter-analízis eredményeképpen 4 eltérő klímaváltozási típusú régiót lehe-

tett elkülöníteni. Az első régió a legnyugatabbi 2 tájegységet foglalja magába. Itt 

várható a legalacsonyabb átlaghőmérséklet és hőmérsékleti extrém nap növekedés. A 

csapadékváltozás és az extrém csapadékok változása is itt a legkevésbé jelentős. A 

következő régió a Dunántúl fennmaradó részeiből alakul ki. Mérsékelt átlaghőmér-

séklet növekedés, az előző régiónál jelentősebb hőmérsékleti extrém változás jellem-

ző. A csapadékmennyiség változása is mérsékelt, a extrém csapadékos napok száma 

növekszik. A harmadik régió az ország északi része. Itt a legnagyobb a régión belüli 

hőmérséklet változékonyság, a legalacsonyabb évi középhőmérséklet és a hőmérsék-

let növekedése kevésbé jelentős. A csapadékmennyiség változása mérsékelt. A ne-

gyedik régió az Alföld tájegységeit foglalja magába. Itt jellemző jelenleg a legmaga-
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sabb átlaghőmérséklet és a legkisebb csapadékmennyiség. A jövőben is itt várható 

legnagyobb mértékű átlagos hőmérséklet és hőmérsékleti extrém nap növekedés, 

valamint itt a legvalószínűbb a csapadékmennyiség csökkenése. A csapadékintenzitá-

si index azonban növekszik, ami alapján a csökkenő csapadékmennyiség a mainál 

koncentráltabban fog esni. 

 

A klímaváltozás hatása a vizsgált környezeti veszélyekre 
 

A villámárvíz veszélyeztetettség meghatározásánál a domborzat, a talaj és az erdőborí-

tottság területi jellemzőit vettük figyelembe. A klímaparaméterek közül a szélsősége-

sen intenzív, 30 mm-t meghaladó csapadékeseteket vettük számításba. A villámárvíz 

veszélyeztetettség a klímaváltozás következményeként 2021–2050-ig még leginkább 

az ország nyugati részén, 2071–2100-ig viszont már a Dunántúl egész területén, vala-

mint az Északi-középhegység területén növekszik.  
Az aszályveszély változásának becsléshez a modell-szimulációkkal nyert klíma-

adatokból a magyarországi viszonyokat leginkább figyelembe vevő Pálfai-féle aszály-

index (PaDI) alkalmazását ítéltük legmegfelelőbbnek. A klímaadatokra támaszkodó 

aszályveszély becslés kimutatta, hogy 2100-ig az aszályveszély mértéke az ország 

egész területén növekszik, sőt a jelenleg is legaszályosabb alföldi tájegységeken lesz a 

legnagyobb, különösen a Körös–Maros köz és a Gödöllői-dombság egységeken.  

A széleróziót befolyásoló legfontosabb paraméterek a talaj mechanikai összetéte-

le, a szélsebesség és a növényborítottság. A klímaváltozás hatásainak elemzéséhez a 

csapadék és hőmérséklet adatokat egyaránt figyelembe vevő DeMartonne-féle aszály-

indexet alkalmaztuk. A leginkább érintett térségek a Duna–Tisza köze, Duna-menti sík, 

Gödöllői-dombság, valamint Belső-Somogy. A szárazodás fokozódásával a 2071–2100 

közötti időszakra a szélerózió-veszélyeztetettség tovább fokozódik, amely során a Me-

zőföld, valamint a Marcal-medence és a Komárom-Esztergomi-síkság területe is erősen 

veszélyeztetetté válhat. 

A tömegmozgásos folyamatok értékelésnél a tömegmozgások által jelenleg érintett 

területek lehatárolásához az 1960 óta regisztrált eseteket vettük alapul. A klimatikus 

indikátorok közül a téli félév csapadékösszegét vettük figyelembe a prognóziskészítés 

számára. A vizsgálatok alapján a lejtős tömegmozgások gyakoriságának és az általuk 

érintett területek nagyságának növekedésére számíthatunk a Dunántúli-Középhegység 

területén, a Mecsek–Drávamente, valamint a Gödöllői-dombság környezetében. 

A talajerózió érzékenység meghatározását a WISCHMEIER ÉS SMITH (1978) formu-

la alapján PATAKI (2000) és KERTÉSZ – CENTERI (2006) által országos léptékben szer-

kesztett térképet vettük figyelembe. A REMO és ALADIN modellekben szereplő klí-

maváltozás-indikátorok közül az extrém csapadékhullási eseteket és a téli összes csa-

padékmennyiséget volt érdemes számításba venni. A számítások alapján dombsági 

területeken a talajerózió növekedésével kell számolni mindkét vizsgált periódusban, 

főként a Dunántúl nyugati felén.  

 

Összesített klimatikus tájérzékenység 
 

Az öt bemutatott természeti veszély esetére a táji egységek potenciális integratív ve-

szély értékét mutatja be a 8. ábra. A számértékek a várható éghajlatváltozásoknak az 

elemzett folyamatokra történő hatását két szinten értelmezik: (1) az elemezett 5 muta-
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tóból a megváltozott érzékenységűek száma (az 1961–1990-es alapértékekhez viszo-

nyítva) és (2) az változások pontértékelése a mezoléptékű egységek 5 paraméterének 1-

3 közötti összegzett értékére vonatkozóan az adott időszakban. Az alacsonyabb érté-

kekkel (min. 5) szemben az egyre nagyobb érzékenységek (max.15-ot) érhetnek el. A 

legnagyobb értékekkel a Marcal-medencében, a Komáromi-síkság és Ny-Magyaror-

szág területén találkozunk mindkét időszakban (az elemezett folyamatok többsége a 

maximális veszélyértéket vetíti előre). 

Az eredmények alapján a változások nem jelentenek komolyabb, az emberi életet 

érintő veszélyt, de számos környezeti folyamat jelentős mértékű, folyamatos, de lassú 

változása azonban igen jelentős veszélyt jelez előre (pl. aszály).  

 

Összegzés 

 

A klíma és az ezzel összefüggő környezeti rendszerek várható alakulásának megisme-

rése fontos kérdés a jövőbeli tervezési stratégiák kidolgozásánál. Munkánk egyik fő 

célja éppen ezért annak bemutatása, hogy a várható klímaváltozás milyen következmé-

nyekkel fog járni a területhasználat, a környezetpolitika számára. 

Az elemzés alapján a REMO és ALADIN modellek szerint az országon belül, a 

kis terület és az alacsony domborzati változékonyság ellenére is megfigyelhetők térbeli 

különbségek a klímaparaméterek változásában.  A hőmérséklet, csapadék és extrém 

indexek alapján 4 eltérő klímaváltozási tendenciájú régió különíthető el, amelyeken a 

klímaparaméterek együttes változása a természeti és társadalmi rendszereket eltérő 

módon befolyásolhatja. 

A klímaadatokra támaszkodó elemzések megmutatták a klímaelemek változása az 

egyes tájegységeken, milyen természeti folyamatok változását, intenzitásának növeke-

dését okozhatják. Kijelölhető, hogy az mely területein kell a tervezésnek különös fi-

gyelmet fordítani a változások káros következményeinek elkerülése érdekében. Az 

idomulás ugyan lassú lehet, de a területi tervezésben mindenképpen figyelembe kell 

venni, mivel elősegítheti a felkészülést környezeti kockázatra. 

Mint minden előrejelzés, ez is sok gyengeséget kordoz magával, az egyik a verifi-

káció lehetőségének hiánya, a másik pedig (az e körben igen nehezen értelmezhető) 

hiba megadása. További bizonytalanságot jelent, hogy a következtetések egy adott 

pályát leíró társadalmi-gazdasági változás mellett (A1B szcenárió) születtek, így csak 

ez az átlagosnak tekinthető társadalmi-gazdasági fejlődési pálya mellett érvényesek. 

Mindezen szakmai korlátok mellett is komoly előrelépés, bemutatott kisebb régiókra 

előállított adatsor, illetve az arra támaszkodó elemzés, ugyanis a predikció számos 

gondja ellenére az elemzés a társadalom és a gazdaság számos ágazata számára olyan 

információkat nyújthatnak, amelyek segíthetik tervezési stratégiák kialakítását, ame-

lyek a kedvezőtlen hatásokat mérsékelhetik. 


