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Linear Time Ordering of Bins

using a Conveyor System∗

Géza Makaya and András Pluhárb

Abstract

A local food wholesaler company is using an automated commissioning
system, which brings the bins containing the appropriate product to the com-
missioning counter, where the worker picks the needed amounts to 12 bins
corresponding to the same number of orders. To minimize the number of bins
to pick from, they pick for several different spreading tours, so the order of
bins containing the picked products coming from the commissioning counter
can be considered random in this sense. Recently, the number of bins con-
taining the picked orders increased over the available storage space, and it
was necessary to find a new way of storing and ordering the bins to spreading
tours. We developed a conveyor system which (after a preprocessing step)
can order the bins in linear space and time.

Keywords: material flow control, bin ordering, modified Yehuda-Fogel algo-
rithm

1 Introduction

Automated material handling systems (AMHSs) are used in several different areas
throughout the world: baggage handling, distribution, postal services, etc. The
different market sectors have different goals and challenges, so it is very hard to
create a common platform for all of them. There are several approaches to cope
with this problem, see for example Haneyah et al. [4] and the references therein.

This paper is motivated by a collaboration of the authors and a local food
wholesaler company. The company is using an automated commissioning system,
where 3 PLC-controlled robots (each serving from 2 rows on their left and right)
bring out and take the bins into 6048 storage spaces. The bins travel through a
PLC-controlled conveyor system to the commissioning counters, where the workers
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pick one product for several orders at the same time, which is faster than picking
the product for one order only. This method decreases the number of needed bins to
pick from, therefore decreases the work of the workers, the robots and the conveyor
system. There is a controlling system over the PLC, called MFC (Material Flow
Control) system, which (among others) optimizes the order of bins arriving to the
commissioning places. When a bin is full or the order’s picking is complete, the
worker places the commissioned bin to the conveyor system, and the MFC brings
it to one of the storage places. This also means, that the commissioned bins are
coming out of the commissioning place in more-or-less random order, but it is not
a problem: when a spreading tour is complete, the robots bring them out in the
correct order. A spreading tour is practically an order of customers visited by one
truck or van, the customers are chosen so that the truck’s load is utilized as much
as possible. And the correct order of the bins for one spreading tour is the reverse
order of the customers’ visiting order on the tour, since when the bins are placed
on a pallet in this order and put in a truck or van, the truck or van works as a
LIFO (last in first out) stack.

Recently, the number of commissioned bins increased over the available storage
space, and the company needed a new way of storing and ordering the bins to
spreading tours without using the robots. The problem is twofold: we need an af-
fordable storage and sorting hardware, but a hardware which is capable of ordering
up to 100 bins (that is the maximum number of bins on one spreading tour). The
conveyor system we use for commissioning is quite expensive, since each module
has its own electric motor, rolling cylinders to pass the bins on and some of the
modules (where the bins need to change traveling directions) even have belts and a
pneumatic system to lift the bins. On the other hand a conveyor belt is relatively
cheap: one motor and a belt for 40-50 bins. So we decided to use conveyor belts
wherever possible for storage, and a mix of conveyor belts and modules for ordering.

In Section 2 we describe the mathematical model for this problem. One of the
best ordering methods using conveyor belts and modules is the merge sort, so our
main problem is to create monotone subsequences from the original sequence of bins
to use this sorting method on this hardware. In Section 3 we overview the relevant
literature and give an example for such partitioning using the Erdős-Szekeres The-
orem [3]. The modified Yehuda-Fogel algorithm [5] is able to find this partioning
faster, but since the moving of bins is much slower than this preprocessing step,
the total time of ordering mainly depends on the former. In Section 4 we show
a possible realization of the physical system, which is able to reorder the bins in
linear time and space.

2 Modeling the problem

The problem has quite a few connections to several areas in the literature. One
of the most closely related topic is the parallel stack loading problem [1], which
uses LIFO stack structures to store items in (preferably) decreasing order so that
no blockages occur while unloading the stacks. However, generally blockages may
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Figure 1: A storage setup

occur, in other words, the items cannot be stored such a way that they can be
retrieved from the stacks in the desired order. In our case this is not allowed, we
do need the correct order of bins. The main idea of the solution is to use parallel
loading of LIFO and FIFO structures corresponding decreasing and increasing parts
of the bin sequence to achieve this goal.

There are several methods to sort n numbers quickly, an obvious one is quicksort
which runs in an expected n log n time. However, this method exchanges elements
far from each other, it would need a complicated hardware and it would take a long
time to perform the exchange physically, therefore it is not suitable for bin ordering.
On the other hand merge-sort is just perfect for sorting bins on a conveyor system.
To see this first we describe a relatively cheap conveyor system capable of storing
and transporting bins and performing merge-sort.

A conveyor system is made up from two major parts: a conveyor belt moving the
bins in one direction, and a direction changer module. A direction changer module
can pick up a bin from one direction using (for example) a belt, and by lowering
the belt deposits the bin to the rolling cylinders, which move the bin forward in
another direction. A simple storage system is shown on Figure 1. The green
modules are conveyor belts for storage, while the blue modules are the direction
changer modules capable of forwarding the bins from the blue modules to the green
ones and from the green ones to the blue ones. The bins are coming in from the
upper-right direction and leaving the storage system through the lower-left module.
The bins can be sorted to the green modules by spreading tours, but within one
spreading tour their order is still not specified, can be considered random.

Let us define the ordering problem. We assume that the bins are on a conveyor
belt in random order, and we want them on a conveyor belt in the correct order.
One step of a conveyor belt is when it moves all bins on it one step further. One
step of a direction changing module is when the module drops the bin to the next
belt/module and picks up the next bin from the previous belt/module. Physically
a direction changer module cannot perform these actions in parallel, but it would
make computation much more complicated if we took this into account. However it
does not change the order of steps needed for reordering the bins: it adds a factor
of 2 in the very worst case.
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Figure 2: Merge-sort for 2 lines

3 The mathematical background of the problem

We proposed merge sorting for the physical hardware consisting of conveyor belts
and direction changing modules. Our next theorem shows that an appropriate con-
veyor system is capable of performing merge-sort in linear time. Later we show that
we can construct the monotone subsequences needed for the algorithm presented
in this theorem.

Theorem 1. Suppose, that we have k lines of ordered set of bins represented here
by increasing numbers, and we want to merge that k lines into one ordered set of
bins. We claim that this can be executed in at most n + k + 1 steps, where n is
the number of bins. One step here is a movement of all bins that need to be moved
from one slot to the next one.

Proof. We prove our claim by induction. For k = 1 the statement is trivial, as the
bins are already in one ordered set.

An example of the case k = 2 is shown on Figure 2. The first column shows
the direction in which the conveyor system can move the bins. On the second part
the original setup of the two ordered list of numbers, and the rest shows the first
couple of merging steps. Once a bin is at the lower-left module, it is the next in
the merged order, it is considered sorted, and it steps out of the merging system to
the left. In each step that number goes to the lower-left position, which is smaller,
and its line moves forward. It is easy to see that the first number appears in the
lower-left position in one or two steps, and after that a number comes in each step.
So the total number of steps to clear the sorting system of all bins is either n + 2
or n + 3 which gives the result for k = 2.

Suppose that we know the claim of the theorem for k lines. Let us consider
the case of k + 1 lines. From our induction assumption we know that while merge-
sorting the right k lines, the smallest number will appear in at most k + 1 steps
in the lower-left position of that k lines. Then the merging continues as we have
already shown for two lines, i.e. it takes at most one more step for the smallest
of the k + 1 lines to appear at the lower-left position of the whole table, then the
numbers are coming continuously, so all together the number of steps is at most
n + k + 2.

To use merge-sorting one needs already sorted numbers, i.e. if we have n numbers
then we would need monotonic subsequences of that, as they can be stored on
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Figure 3: Illustration for finding long monotonic sequences

different lines and then merged. First we show a heuristics to find long monotone
subsequences based on the proof of the Erdős and Szekeres Theorem [3].

Theorem 2. For given r and s any sequence of distinct numbers with length at
least (r − 1)(s − 1) + 1 contains either a monotonically increasing subsequence of
length r or a monotonically decreasing subsequence of length s.

As a special case we get that a sequence of n numbers contains a monotonic
subsequence of length d

√
n e where dxe is the smallest integer such that x ≤ dxe.

Applying this result for the original sequence, then to the sequence from which
the found monotonic subsequence is removed, etc, one can find monotonic subse-
quences of the original sequence so that all elements appear in at least one subse-
quence, i.e. it is a partition of the original sequence to monotonic subsequences. Let
us see an algorithm to find a long enough monotonic subsequence. We demonstrate
the algorithm on the sequence 10, 7, 2, 1, 13, 8, 11, 3, 5, 12, 14, 9, 6, 4. To illustrate
this sequence, take the index of an element as a first coordinate, and the element
itself as the second coordinate as shown in Figure 3a.

Let us find peak elements in the sequence: they are larger than any elements in
the sequence after them. These elements correspond to points in the figure which
do not have other points in their upper-right quarter. They are marked by red
dots on Figure 3b and they are called the Pareto border or layer 1 of the point
set. Peeling this Pareto border off, we find another set of peak elements (layer 2)
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marked by green on Figure 3c. Continuing this procedure we color all points, all of
them will be part of some layer. Now there are two possibilities according to the
Theorem of Erdős and Szekeres.

• Either there is a long enough layer corresponding to a monotonically decreas-
ing subsequence. Since we now have n = 14 elements,“long enough” means
now d

√
14 e = 4 elements. Layer 1 satisfies this property.

• Or (if all layers have less than 4 elements) then there must be at least 4 layers,
which is also true now: we have 5 layers. In this case if we choose one point
from layer 5 it is not a peak element considering the points of layer 5 and 4,
so there must be a point in layer 4 which is in its upper-right quarter. Then
this point is not peak in layer 5, 4 and 3, so there is a point in layer 3 in its
upper-right quarter. Continuing this procedure we find one point from each
layer forming a monotonically increasing subsequence of length 5.

By removing this long enough monotonic subsequence from the sequence and
repeating this procedure one can arrive (for example) to this partitioning: 10, 7, 2,
1, 13, 8, 11, 3, 5, 12, 14, 9, 6, 4. Our algorithm takes O(n3) time to complete, and
it shows the basic method for finding a partitioning of a sequence to monotonic
subsequences. The partitioning guaranteed by the Erdős and Szekeres Theorem
can be constructed by an asymptotically better algorithm developed by Yehuda
and Fogel [6].

Theorem 3. A sequence of n numbers can be partitioned into 2b
√
nc monotone

subsequences in time O(n1.5). All the subsequences can be chosen to be of size d
√
n e

or less.

Brandstädt and Kratsch [2] gave the smaller bound of
⌊√

2n + 1/4− 1/2
⌋

on

the number of subsequences and proved that it is a tight bound. Recently Yang et

al. [5] modified the Yehuda-Fogel algorithm to provide at most
⌊√

2n + 1/4− 1/2
⌋

monotonic subsequences of size no more than d
√
n e in O(n1.5) time.

If our algorithm has to comply with the second part of the theorem above, then
in our example we can simply ignore the extra elements in the monotonic subse-
quences we find during the procedure. Then we would get the following partitioning
for example: 10, 7, 2, 1, 13, 8, 11, 3, 5, 12, 14, 9, 6, 4.

4 The physical realization of the sorting system

Now we have the theoretical background to design the physical sorting system.
We assume, that the bins are on a conveyor belt one after the other. Their

desired order is represented by numbers. First we apply the modified Yehuda-
Fogel algorithm to partition them into monotone subsequences. Since the number
of bins are relatively small (in our case under 100), their algorithm runs within
milliseconds on a modern computer. Then let us feed the bins from the lower-
right module into the construction shown on Figure 4. This construction has
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Figure 4: Construction of the sorting conveyor system

Figure 5: Using the sorting conveyor system

⌊√
2n + 1/4− 1/2

⌋
columns of red sorting conveyor belts, each belt has the length

d
√
n e (the figure shows the numbers for our example sequence: for n = 14 we have⌊√
2n + 1/4− 1/2

⌋
= 4 columns of length d

√
n e = 4). Each monotonic subse-

quence goes into its own red conveyor belt: there are enough belts and they are
long enough to accommodate them (see Figure 5a). This partitioning of the bins

takes at most n +
⌊√

2n + 1/4− 1/2
⌋

+ d
√
n e bin moving steps. Monotonically

increasing subsequences go up in their red conveyor belts, while monotonically de-
creasing sequences remain down. Then the system merge-sorts the monotonically
increasing subsequences by moving them upward out of the red conveyor belts (see
Theorem 1). At the same time the system merge-sorts the monotonically decreas-
ing subsequences by moving them downward out of the red conveyor belts, which
makes the merged sequence monotonically increasing (see Figure 5b). Note that on
the figure the monotonically decreasing sequences are in the middle of sorting as
they need to wait for the monotonically increasing sequence to arrive. Finally the
system merge-sorts these two subsequences to produce the final sorted sequence.

The last sortings take at most n+
⌊√

2n + 1/4− 1/2
⌋

+ d
√
n e+ 1 steps. So all to-

gether the sorting needs 2
(
n +

⌊√
2n + 1/4− 1/2

⌋
+ d
√
n e
)

+1 time to complete,

that is, it is linear in the number of bins.

The space required to order n bins is
(⌊√

2n + 1/4− 1/2
⌋

+ 1
)

(d
√
n e+ 2)
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which is approximately n
√

2 so the space requirement is also linear in the number
of bins.

In a physical setup one does not need the complete sorted sequence of bins
standing on a conveyor belt, for example the bins can be moved to a pallet while
they are still coming out of the sorting system. Therefore the actual time from
the start of the sorting to the point when one can start working and (according
to Theorem 1) can continuously work with the sorted sequence is at most n +

2
⌊√

2n + 1/4− 1/2
⌋

+ 2d
√
n e+ 1.

This sorting conveyor system can sort more than n bins, if the sequence can be
partitioned so that its monotonic subsequences fit into the sorting system. This
can be achieved (for example) by pre-merge-sorting the bins while they are com-
ing out of the storage conveyor belts. With this change one can achieve that all
monotonic subsequences are decreasing, and hence we do not even need the upper

(blue) and the left (purple) modules and belts containing
⌊√

2n + 1/4− 1/2
⌋

+ 2

expensive direction changing modules: a cut in the costs. Moreover, the lengths
of the subsequences can be maximized, so the sorting system can be completely
occupied during the sorting.

The sorting can run even faster by installing several (say: m) of these kind of
sorting systems, dividing the original sequence into m subsequences of more-or-less
equal size, sorting them parallel in the sorting systems and then merging the sorted
subsequences into one sequence.

5 Conclusions

The problem of ordering bins seems to be neglected in the literature. There are
several sorting agents, which can collect items to different containers based on
some of their property, but they do not order those items within one container. We
constructed a system which solves the ordering problem, so that the number of bin
moving steps and the required space is linear in the number of bins. Searching for
the modified Yehuda-Fogel algorithm (which is essential for this method to work)
did not return an application similar to the one presented in this paper, so this
method of ordering the bins looks novel. The system itself is a generalization of
the parallel loading of LIFO stacks by adding FIFO capabilities to the stacks.

Although the physical ordering of n bins takes linear time in the number of
bins, we should not forget that we need the preliminary task of partitioning the
sequence into monotone subsequences, and it takes O(n1.5) time. However, the
physical ordering of bins is much slower: our conveyor system moves the bins by at
most 1 module/second speed. If we had, say, 1 million bins (which is not realistic in
practice), it would take days to order them even when using much faster conveyor
belts and modules, so the time needed for the partitioning is negligible compared
to this time frame.



Linear Time Ordering of Bins using a Conveyor System 195

References

[1] Boysen, Nils and Emde, Simon. The parallel stack loading problem to minimize
blockages. European Journal of Operational Research, 249(2):618–627, 2016.
DOI: 10.1016/j.ejor.2015.09.033.
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