
Acta Cybernetica 24 (2019) 249–262.

Reconstruction of Rooted Directed Trees∗

Dénes Barthaa

Abstract

Let T be a rooted directed tree on n vertices, rooted at v. The rooted sub-
tree frequency vector (RSTF-vector) of T with root v, denoted by rstf(T, v)
is a vector of length n whose entry at position k is the number of subtrees
of T that contain v and have exactly k vertices. In this paper we present
an algorithm for reconstructing rooted directed trees from their rooted sub-
tree frequencies (up to isomorphism). We show that there are examples of
nonisomorphic pairs of rooted directed trees that are RSTF-equivalent, that
is they share the same rooted subtree frequency vectors. We have found all
such pairs (groups) for small sizes by using exhaustive computer search. We
show that infinitely many nonisomorphic RSTF-equivalent pairs of trees exist
by constructing infinite families of examples.

Keywords: tree reconstruction, subtree size frequencies, rooted directed
trees

1 Introduction

Reconstruction of certain combinatorial structures from given partial information
plays an important role in several problems such as reconstructibility of strings
[5, 3, 1], trees, graphs [8, 7], matrices [9, 4] etc.

The motivation behind this paper comes from mass spectrometry data analysis.
The problem we investigate is the possibility of reconstruction of an unlabeled
directed rooted tree with n vertices, given the number of rooted directed subtrees
frequencies of size 1, 2, . . . , n, which we call the RSTF-vector. In [2] the authors
investigated the problem of reconstructibility of unlabeled free trees and defined
STF-vector with the sum of all the RSTF-vectors of the subtrees of a given tree.
Because there is no reconstruction algorithm of free trees given in the literature, the
approach presented in this paper could be the first step towards such an algorithm.

In Section 2 we give the formal definition of the RSTF-vector, RSTF-polynomial,
well formed representation and show how to construct them from a given rooted

∗This submission is for the special issue of CSCS 2018. Talent Management in Autonomous
Vehicle Control Technologies – The project was supported by the European Union, co-financed
by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00001).

aEötvös Loránd University, E-mail: denesb@gmail.com

DOI: 10.14232/actacyb.24.2.2019.5

250 Dénes Bartha

P4 S4

p

s

rstf(P4, p) =[1, 1, 1, 1, 1]

r(P5, p) =1 + x + x2 + x3 + x4

rstf(S4, s) =[1, 4, 6, 4, 1]

r(S4, s) =1 + 4x + 6x2 + 4x3 + x4

Q

v1

v2 v3

v4 v5 v6 v7

rstf(Q, v1) =[1, 2, 5, 7, 7, 4, 1]

r(Q, v1) =1 + 2x + 5x2 + 7x3 + 7x4 + 4x5 + x6

Figure 1: P4 denotes a path of length 4 rooted at p, S4 a star with 4 leaves rooted
at v2, and a more complex tree Q on 7 nodes rooted at v1. The corresponding
RSTF-vectors and RSTF-polynomials are given below the trees.

directed tree. In section 3 we introduce the algorithm RRDT that can reconstruct
the rooted directed tree corresponding to a given polynomial. In section 4 we show
some results on RSTF-equivalent trees. In the Conclusion section we propose new
research directions.

The main problem we investigate is the method of reconstructing an unlabeled
rooted directed tree from its rooted subtree frequencies [2]. The motivation of the
problem comes from mass spectrometry data analysis, as the RSTF-vector models
frequency data from mass spectrometry. Although unique reconstruction from this
vector is not always possible, we still find the mathematical and algorithmic aspects
of the problem worth investigating. Also, as a practical application, a molecule
database search filter might be created using RSTF indexing, but this is outside
the scope of the present paper and could be the topic of future research.

2 Basic definitions

In the paper x is used for the variable of univariate polynomials denoted by f, g, . . .
Unless otherwise stated, polynomials have integer coefficients. The letter n usually
denotes the number of nodes of an unlabeled rooted directed tree. Trees are denoted

Reconstruction of Rooted Directed Trees 251

by capital letters P,Q,R, S, . . .

Definition 1. Let T = (V,E) be a rooted directed tree on n(n ≥ 1) vertices,
rooted at vertex v ∈ V . The vector rstf(T, v) = [r1, . . . , rn] is called the rooted
subtree frequency vector (RSTF for short) of T with root v, where each ri shows
the number of those i-sized subtrees of T that contain v.

We can represent RSTF-vectors with polynomials by choosing the entries of the
vectors as the appropriate coefficients of the polynomial.

Definition 2. Let T be a rooted directed tree, v the root of T , with rstf(T, v) =
[r1, r2, . . . , rn]. The RSTF-polynomial of T with root v, denoted by r(T, v) is defined
by r(T, v) = r1 + r2x + r3x

2 + · · ·+ rnx
n−1.

Figure 1 shows three examples on RSTF-vectors and polynomials. The reason why
we use RSTF-polynomials instead of vectors is that we can easily calculate the
RSTF-polynomial from a given rooted directed tree graph structure as shown in
Lemma 1 [2].

Lemma 1. Given a tree T with root v, one can calculate the RSTF-polynomial in
O(n2) time using the following recursive formula:

rstf(T, v) =

k∏
i=1

(1 + x · rstf(Ti, vi)) ,

where k is the number of children of v, which are denoted by vi, and Ti is the
subtree rooted at vi.

To illustrate the use of this lemma, we compute the RSTF-polynomial of tree
Q given in Figure 1, applying the recursive approach step by step (Qi denotes the
subtree rooted at vi, i = 2, . . . , 7):

rstf(Q, v1) = (1 + x · rstf(Q2, v2)) · (1 + x · rstf(Q3, v3))

rstf(Q2, v2) = (1 + x · rstf(Q4, v4)) · (1 + x · rstf(Q5, v5)) · (1 + x · rstf(Q6, v6))

rstf(Q3, v3) = (1 + x · rstf(Q, v7))

rstf(Q4, v4) = rstf(Q5, v5) = rstf(Q6, v6) = rstf(Q7, v7) = 1

If we substitute back to rstf(Q, v1), and expand the product, the resulted polyno-
mial’s coefficient sequence gives the RSTF-vector of Q:

rstf(Q, v1) = (1 + x · ((1 + x · 1) · (1 + x · 1) · (1 + x · 1)) · (1 + x · (1 + x · 1)))

= 1 + 2x + 5x2 + 7x3 + 7x4 + 4x5 + 1x6

A polynomial may have many different representations, but in the case of RSTF-
polynomials, there is a specific representation from which the tree structure corre-
sponding to the polynomial is easy to determine (as in the above form of rstf(Q, v1).
We therefore introduce the following formal definition.

252 Dénes Bartha

Definition 3. We call a representation of a polynomial f well-formed, if it is either
of the form

• f = 1, or

• f = (1+x ·f1) ·(1+x ·f2) · · · (1+x ·fk) with k ≥ 1 where the fj (k = 1, . . . , k)
are themselves polynomials in well-formed representation.

Every polynomial f with a well-formed representation is an RSTF-polynomial,
and every RSTF-polynomial has a well-formed representation. Using the notations
in the definition, the connection is that the root has k children and the subtrees
rooted in these children have RSTF-polynomials fj for j = 1, . . . , k. Note that
well-formed representations consist only of 1, +, x, · and () symbols, and they can
be generated by a context-free grammar.

A necessary but not sufficient condition for a polynomial f to have a well-formed
representation is that it can be written as f = (1+xf1) · (1+xf2) · · · (1+xfk) with
polynomials fj that have constant term 1 (but not necessarily RSTF-polynomials
themselves). We will use this as a filter in our algorithms later. For later use, we
define the concept of RSTF-candidate factor and RSTF-candidate representation.

Definition 4. We call a polynomial RSTF-candidate factor if both the constant and
linear coefficients are equal to 1. We call a representation of polynomial f RSTF-
candidate representation if f is written as a product of RSTF-candidate factors,
i.e. as f = (1 +xf1) · (1 +xf2) · · · (1 +xfk) where all polynomials fj have constant
term 1.

As explained later, the algorithms for finding well-formed representations (or
otherwise put, corresponding trees) for a polynomial f will operate by first find-
ing all RSTF-candidate representations and then recursively checking whether the
polynomials fj are RSTF-polynomials or not, and if they are, giving all their well-
formed representations.

3 Methods

3.1 Reconstruction algorithm

Our main goal is to construct an algorithm that has a polynomial f as input
and all trees having f as RSTF-polynomial as output. With the help of Lemma
1 we can construct such an algorithm. As discussed in the previous section, for
finding the tree structure it is sufficient to give the well-formed representation of
the polynomial.

The main idea is to factorize the input polynomial into irreducible factors and
then group the factors so that this grouping yields a well-formed representation
(using recursive calls in the process).

Let a1 be the linear coefficient of f and let pi denote the distinct irreducible
factors of f , with exponent ki. Then the irreducible factorization and the well-
formed representation (necessarily having a1 factors by matching the linear terms)
are both equal to f :

Reconstruction of Rooted Directed Trees 253

f = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1

= pk1
1 · p

k2
2 · · · pkm

m

= (1 + x · f1) · (1 + x · f2) · · · (1 + x · fa1)

(1)

Each factor in the well-formed representation is the product of some irreducible
factors. We call a partition of the multiset of irreducible factors a proper grouping
of irreducible factors if the product of polynomials within the groups is always of
the form 1 + xfj where fj is an RSTF-polynomial.

Once we have a well-formed representation, the tree structure can be given
quickly:

Lemma 2. From a well formed RSTF-polynomial on degree n−1 we can reconstruct
a corresponding tree in n steps.

Proof. Let f be a well formed RSTF-polynomial corresponding to a tree. Since
deg(f) ≥ 0 we can assume that the tree has at least one node that we create
in advance. Then using Lemma 1 we have to count the number of outer blocks
(. . .) · · · (. . .) and create as many new nodes (children) on the next level that we
connect with the previous parent node with a directed edge (the edge points to the
children). We build up the tree using this simple rule for each block recursively.
Because there are exactly n pair of parentheses jumbled in f , this process takes n
steps.

The pseudocode of the RRDT algorithm can be seen in Algorithm 1. Figure
3.1 shows an example on how it works.

For any given polynomial the function gives back the corresponding well-formed
polynomial (or polynomials) if one exists, otherwise returns ↓. First it checks the
base cases. Note that the constant term and the linear coefficient must be equal to
1 (see Lemma 1). The next step is to check whether the solution can be found in
the dictionary (known) by using dynamic programming approach (memoization).
The upcoming part consists of two main cases: when the linear coefficient of the
given polynomial (denoted by f [x]) is 1 and when it is greater than 1. Note that
because of the well-formed property equation (1) it cannot be 0 or negative.

When f [x] = 1, we have to call the function recursively for f−1
x because if there

is a solution, then f has the form: 1 + x · (. . .). In this case we have to store
(1 + x · result) in the dictionary.

Otherwise if f [x] > 1, we perform polynomial factorization that can be com-
puted efficiently (polynomial time) using LLL [6] or other similar methods. The
factorization gives the prime factors with the appropriate powers in the form of

f = pk1
1 · · · pkm

m · qkm+1

1 · · · qkm+s
s (where pi and qj are prime factors). We can ob-

serve that among the factors there will be RSTF-polynomials pi that can be rep-
resented by well-formed polynomials according to equation (1) and the remaining
non-RSTF-polynomials qj have different form (e.g. have a constant term different
from 1).

254 Dénes Bartha

Algorithm 1 Reconstruct well-formed RSTF-polynomial

known← {} . dictionary for the known polynomials
procedure RRDT(f = a0 + a1x + a2x

2 + . . . + anx
n)

if f = 1 then
return 1 . Base cases

else if a0 6= 1 ∨ an 6= 1 then
return ↓

else if f ∈ known then
return known[f]

else if a1 = 1 then . If the linear coefficient is 1
rp← RRDT(f−1

x);
if rp =↓ then

known[f]←↓
else

known[f]← (1 + x · rp)
end if

else . If the linear coefficient is greater than 1
f = rk1

1 · · · r
kt
t . Factorization step

if t < a1 then . If there are less factors than a1 → no solution
known[f]←↓

else
f = pk1

1 · · · pkm
m · qkm+1

1 · · · qkm+s
s . pi: RSTF-polynomials

. qj : non-RSTF-polynomials
. Find the proper groupings: g1, . . . , ga1

if ∃f = g1 · · · ga1 ,∀i ∈ [1, a1] : RRDT(gi) 6=↓ then

rp←
a1∏
i=1

(1 + x ·RRDT(gi−1
x))

known[f]← rp
else

known[f]←↓
end if

end if
end if
return known[f]

end procedure

Reconstruction of Rooted Directed Trees 255

rstf(R,w) = 1 + x + x2 + 2x3 + 4x4 + 6x5 + 8x6 + 7x7 + 4x8 + x9

1 + x + 2x2 + 4x3 + 6x4 + 8x5 + 7x6 + 4x7 + x8

1 + 2x + 4x2 + 6x3 + 8x4 + 7x5 + 4x6 + x7

1 + x + 2x2 + 3x3 + 3x4 + x5 1 + x + x2

1 + 2x + 3x2 + 3x3 + x4

1 + x + 2x2 + x3 1 + x

1 + 2x + x2

1 + x 1 + x

1 1

1

x + 1

1

rstf(R,w) = 1 + x

(
1 + x

(
1 + x

(
(1 + x(1 + x · 1)(1 + x · 1))(1 + x · 1)

))(
1 + x(1 + x · 1)

))

Figure 2: Given a polynomial 1 + x+ x2 + 2x3 + 4x4 + 6x5 + 8x6 + 7x7 + 4x8 + x9.
Each node in the graph (except the root w) is constructed by and connected with
the appropriate parent node.

We need to find proper groupings of the prime factors f = g1 · g2 · · · ga1
, where

each gi is already well-formed. Note that the number of such groups is exactly
f [x] = a1. This step is nontrivial and needs further explanation how it can be done
reasonably fast, therefore we devote the following subsection to this subroutine.

3.2 Find the proper groupings

The näıve approach is to try all the possible combinations of the prime factors and
filter out the proper settings (each group represents a rooted, directed tree). In most
cases (when we don’t have many different kind of prime factors) this approach -
generating all the a1-sized partitions of a multiset - could work. But note that
this is even worse than finding all the permutations of a multiset (with repetitions
allowed) because we also have to distribute parentheses.

Fortunately we can give a better method to solve this problem. By the well-
formed property, in each group of a proper grouping, the linear coefficient of the
product must be 1. This is seen by expanding the product of all the members of
the group: 1 + x + b1x

2 + . . . + bl−1x
l−1 + xl (for some degree l).

256 Dénes Bartha

Recall that RSTF-candidate representations are exactly the ones having this
property of the linear term. So we will look at all RSTF-candidate representations,
and then we have to recursively check whether the RSTF-candidate factors are
indeed RSTF-polynomials or not, and if they are, function RRDT gives all their
well-formed representations recursively.

A grouping of irreducible factors that gives an RSTF-candidate representation
is easy to verify: we only need to sum the linear coefficients. We call a partition of
a multiset of integers a proper integer grouping if the sum in every group is exactly
1.

Note that the prime factorization could give back non-RSTF-polynomials where
the constant term is not equal to one (negative, 0 or greater than 1). Hence
we first create a multiset of the linear coefficients of the prime polynomials pi[x],
qj [x]. We then find all proper integer groupings where the sum of each group is
1. In Algorithm 2, calling FindProperIntegerGroupings(A, ∅, ∅) for some multiset
of integers A will output all such proper integer groupings. Note that this uses a
DFS approach.

Algorithm 2 Finding the proper grouping of an integer multiset

1: procedure FindProperIntegerGroupings(A,G, group)
2: if

∑
gi∈group gi > 1 or

∑
ai∈A ai < 1 then

3: return
4: end if
5: if

∑
gi∈group gi = 1 then

6: G← G ∪ {group}
7: group← ∅
8: if A = ∅ then
9: output G

10: end if
11: end if
12: for ∀a ∈ A do
13: FindProperIntegerGroupings(A \ {a}, G, group ∪ {a})
14: end for
15: end procedure

Note that FindProperIntegerGroupings might output the same partition multi-
ple times. To avoid this we introduce the following ideas.

We define a � relation on the subsets (multisets) of a finite set A ⊂ Z in
the following way: ∀x, y ⊆ A : (where x, y are multisets) x � y ⇐⇒ |x| <
|y| or (|x| = |y| and [x] ≤ [y]), where x = {x1 · d1, x2 · d2, . . . , xn · dn}, x1 <
x2 < · · · < xn, [x] = [x1, . . . , x1︸ ︷︷ ︸

d1

, x2, . . . , x2︸ ︷︷ ︸
d2

, . . . xn, . . . , xn︸ ︷︷ ︸
dn

] here ≤ represents the

lexicographic relation. Now we can extend function FindProperIntegerGroupings
with the following things:

• In line 13 take the elements of A in monotonically increasing order.

Reconstruction of Rooted Directed Trees 257

• Add a new line between line 5 and 6: ”if ¬(y � group) then return”, where
y denotes the last group that we have added to G.

The following figure shows an example on how to find the groupings of the
multiset A = {−1, 0, 1, 1, 1} (the colours denote different groups).

−1

0

1

1

1

E
the size of the last group is less
than the previous one...

−1

1

1

0

1

E

0

1

−1

1

1

OK

1

−1

0

1

1

OK

Solutions:

{{
{−1,0,1,1}, {1}

}
,
{
{0,1}, {−1,1,1}

}}

After this step another problem arises: there could be more samples of each
type of polynomials, where the type corresponds to the linear coefficient. Consider
the following example:

1 + 2x + 4x2 + 8x3 + 12x4 + 15x5 + 16x6 + 15x7 + 11x8 + 5x9 + x10

= (1 + 0 · x + x2 + 2x3 + x4)︸ ︷︷ ︸
f
(0)
1

· (1 + 0 · x + x2 + x3)︸ ︷︷ ︸
f
(0)
2

· (1 + 1 · x + x2)︸ ︷︷ ︸
f
(1)
3

· (1 + 1 · x)︸ ︷︷ ︸
f
(1)
4

Here multiset A′ = {0, 0, 1, 1} contains the linear coefficients and FindProper-
IntegerGroupings (A′, ∅, ∅) gives the proper integer groupings:{{

{0, 1}, {0, 1}
}

︸ ︷︷ ︸
g1

,
{
{1}, {0, 0, 1}

}
︸ ︷︷ ︸

g2

}

But there are different RSTF-candidate factors: 0 :f
(0)
1 , f

(0)
2 , 1 :f

(1)
3 , f

(1)
4 and the

question is how to combine them properly:

g1 =
(
f
(0)
1 · f (1)

3

)
·
(
f
(0)
2 · f (1)

4

)
g1 =

(
f
(0)
1 · f (1)

4

)
·
(
f
(0)
2 · f (1)

3

)
 Is it valid?

258 Dénes Bartha

R R′

v1

v2

Figure 3: R and R′ are two nonisomorphic rooted directed RSTF-equivalent trees

g2 =
(
f
(1)
3

)
·
(
f
(0)
1 · f (0)

2 · f (1)
4

)
g2 =

(
f
(1)
4

)
·
(
f
(0)
1 · f (0)

2 · f (1)
3

)
 Is it valid?

Fortunately it is not so hard to get the proper settings from the possibilities if
we use the above presented function RRDT. If one RSTF-candidate factor does not
represent a valid rooted directed tree, we don’t need to check the remaining factors.
In this case we have to carry on and check the next possible RSTF-candidate
representation until we find a proper solution.

Function RRDT reduces the degree of the polynomial by 1 when f [x] = 1 (or
returns with a saved result). When f [x] > 1 the factorization step takes polynomial
time. Hence the step of finding the proper grouping dominates the function where
artificial examples could be given that takes exponential running time. However
in practice it works fine for bigger trees on 500-1000 nodes as well and finds the
solutions in a few seconds.

An implementation of the RRDT-algorithm written in sage, python can be
found at https://github.com/denesbartha/RRDT.

4 Isomorphism and reconstructibility results

Algorithm 1 is able to reconstruct rooted directed trees up to isomorphism. There
are several cases when the given polynomials determine uniquely the trees. Typical
examples (see Figure 1) are Pm - path of length m (coefficients of the corresponding
polynomial: 1, 1, . . . 1) and Sk - star with k leaves (coefficients of the corresponding
polynomial:

(
k
0

)
,
(
k
1

)
, . . .

(
k
k

)
) [2]. Not surprisingly there are cases when a given

input polynomial represents multiple rooted directed trees. Figure 3 shows two
nonisomorphic rooted directed trees that share the same RSTF-polynomial.

Definition 5. We call two nonisomorphic rooted directed trees RSTF-equivalent if
they share the same RSTF-polynomial.

The following equation shows the well formed RSTF-polynomials of R and R′

trees.

Reconstruction of Rooted Directed Trees 259

rstf(R, v1) = rstf(R′, v2)

= x6 + 3x5 + 4x4 + 4x3 + 3x2 + 2x + 1

= (x3 + x2 + 1) · (x2 + x + 1) · (x + 1)

=

(
1 + x ·

(
1 + x ·

((
1 + x · 1

)
·
(
1 + x · 1

))))
·
(

1 + x ·
(
1 + x · 1

))
=

(
1 + x ·

((
1 + x ·

(
1 + x · (1 + x · 1)

))
·
(

1 + x · 1
)))

· (1 + x · 1)

Lemma 3. Given two nonisomorphic rooted directed RSTF-equivalent trees T1 and
T2, that share the same RSTF-polynomial f . If we add a new node respectively to
both trees that we connect with the original roots, the resulted T ′1, T ′2 trees will
remain RSTF-equivalent. Their RSTF-polynomial is 1 + x · f .

Proof. By using Lemma 1 we can see that joining a new root node to a rooted
directed tree Q with RSTF-polynomial g results in a new tree Q′ that has RSTF-
polynomial 1 + x · g. Simply applying this rule to the given nonisomorphic rooted
directed RSTF-equivalent trees T1 and T2 with RSTF-polynomial f , we create two
new nonisomorphic rooted directed trees T ′1 and T ′2 that share the RSTF-polynomial
1 + x · f

Ri : R′i

v
(i)
1

v
(1)
1

v1

...

v
(i)
2

v
(1)
2

v2

...

Figure 4: rstf(Ri, v
(i)
1) = rstf(R′

i, v
(i)
2) = 1 + x · (1 + x · (. . . (1 + x · rstf(R, v1)) . . .)), ∀i ∈ N+

260 Dénes Bartha

Table 1: second column: a(n) - the number of unlabeled rooted trees with n nodes
(https://oeis.org/A000081); third column: the number of nonisomorphic equiv-
alence classes; fourth column: the ratio of #equivalence classes to a(n); fifth col-
umn: the maximal size equivalence class; sixth column: Shannon entropy of the
equivalence classes.

n a(n)
#equivalence

classes
ec(n)
a(n)

Maximal size
equivalence class

Entropy

3 2 2 1.0 1 0
4 4 4 1.0 1 0
5 9 9 1.0 1 0
6 20 20 1.0 1 0
7 48 47 0.97917 2 0.14855
8 115 112 0.97391 2 0.178
9 286 274 0.95804 2 0.25943
10 719 679 0.94437 2 0.3231
11 1842 1717 0.93214 3 0.3833
12 4766 4393 0.92174 4 0.42953
13 12486 11374 0.91094 4 0.47557
14 32973 29725 0.9015 5 0.51466
15 87811 78428 0.89315 7 0.54811
16 235381 208431 0.8855 8 0.57819
17 634847 557555 0.87825 11 0.60622
18 1721159 1499739 0.87135 11 0.63245
19 4688676 4054714 0.86479 15 0.65711
20 12826228 11011259 0.8585 16 0.68046

Theorem 1. There are infinitely many RSTF-equivalent pairs of trees exist.

Proof. It is enough if we find only one RSTF-equivalent pair of rooted directed
trees. By joining arbitrary many new nodes to their roots respectively (Lemma 3)
we always get new nonisomorphic rooted directed RSTF-equivalent trees. For ex-
ample we can alter the given pair of directed trees rooted at v1, v2 in Figure 4
by joining new roots to them respectively arbitrary many times. This creates new
nonisomorphic rooted directed RSTF-equivalent pair of trees.

RSTF-equivalency forms an equivalence relation where the classes are the sets
of nonisomorphic rooted directed trees with n nodes. Using exhaustive computer
search we have found all the equivalence classes up to n = 20. Table 1 summarizes
the results. Here we applied the Shannon entropy of the equivalence classes s.t.
for a fixed tree size n that has a(n) number of nonisomorphic rooted directed
trees with RSTF-equivalent classes of C(n) = {c1, . . . cm}, m ≤ n, H0(C(n)) =
−
∑

log2(|ci|/m)|ci|/m. Up to n = 6, H0(C(n)) = 0 which means that every

Reconstruction of Rooted Directed Trees 261

equivalence class contains only one element (in other words there are no RSTF-
equivalent pairs). For n > 6 sizes the entropy rises.

Note that the maximum number of equivalence classes ec(n) cannot exceed the

number of nonisomorphic rooted directed trees a(n), hence ec(n)
a(n) ≤ 1. Also because

there are infinite nonisomorphic rooted directed RSTF-equivalent tree classes exist

(Lemma 1), 0 < ec(n)
a(n) < 1, for n ≥ 7. Our conjecture is that limn→∞

ec(n)
a(n) = 0.

5 Conclusion and future work

In this paper we gave a concrete reconstruction algorithm RRDT for rooted directed
trees. The main future goal is to extend these results for free trees / simple graphs
that could be used in bioinformatics or spectrometry data analysis. We also plan
to analyze the time complexity of the algorithm formally.

We were using only univariate polynomials and unlabeled trees. We aim to
extend the above presented approach using multivariate polynomials representing
labeled rooted directed trees.

Although it seems hard, in theory the factorization step of the reconstruction
algorithm could be modified s.t. it would produce correct groupings of a given
polynomial that represents a rooted directed tree.

I would also like to thank the anonymous referee for the valuable comments and
suggestions.

References

[1] Acharya, Jayadev, Das, Hirakendu, Milenkovic, Olgica, Orlitsky, Alon, and Pan,
Shengjun. String reconstruction from substring compositions. SIAM Journal
on Discrete Mathematics, 29(3):1340–1371, 2015. DOI: 10.1137/140962486.

[2] Bartha, Dénes and Burcsi, Péter. Reconstructibility of trees from subtree size
frequencies. Studia Universitatis Babes-Bolyai, Mathematica, 59(4):435–442,
2014.

[3] Dudik, Miroslav and Schulman, Leonard J. Reconstruction from subsequences.
Journal of Combinatorial Theory, Series A, 103(2):337–348, 2003. DOI:
10.1016/s0097-3165(03)00103-1.

[4] Kós, Géza, Ligeti, Péter, and Sziklai, Péter. Reconstruction of matrices
from submatrices. Mathematics of Computation, 778:1733–1747, 2009. DOI:
10.1090/s0025-5718-09-02210-8.

[5] Krasikov, I. and Roditty, Y. On a reconstruction problem for sequences.
Journal of Combinatorial Theory, Series A, 77(2):344–348, 1997. DOI:
10.1006/jcta.1997.2732.

262 Dénes Bartha

[6] Lenstra, A. K., Lenstra, H. W., and Lovász, L. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534, 1982. DOI:
10.1007/bf01457454.

[7] Manvel, Bennet. Reconstruction of trees. Canadian Journal of Mathematics,
22(1):55–60, 1970. DOI: 10.4153/CJM-1970-007-4.

[8] Manvel, Bennet. On reconstructing graphs from their sets of subgraphs.
Journal of Combinatorial Theory, Series B, 21(2):156–165, 1976. DOI:
10.1016/0095-8956(76)90056-3.

[9] Manvel, Bennet and Stockmeyer, Paul K. On reconstruction of matrices. Math-
ematics Magazine, 44(4):218–221, 1971. DOI: 10.2307/2689082.

Received 7th September 2018

