On a Neumann boundary value problem for Ermakov-Painlevé III

Amster, Pablo and Rogers, Colin: On a Neumann boundary value problem for Ermakov-Painlevé III. Electronic journal of qualitative theory of differential equations 69. pp. 1-10. (2019)

[img] Cikk, tanulmány, mű
ejqtde_2019_069.pdf

Download (408kB)

Abstract

A Neumann-type boundary value problem is investigated for a hybrid Ermakov–Painlevé equation. Existence properties are established and a sequence of approximate solutions is investigated. In an appendix, a novel class of coupled Hamiltonian Ermakov–Painlevé III systems is introduced and shown via a reciprocal transformation to be reducible to a canonical, integrable Ermakov–Ray–Reid system.

Item Type: Article
Journal or Publication Title: Electronic journal of qualitative theory of differential equations
Date: 2019
Number: 69
Page Range: pp. 1-10
ISSN: 1417-3875
DOI: https://doi.org/10.14232/ejqtde.2019.1.69
Uncontrolled Keywords: Határérték probléma
Additional Information: Bibliogr.: p. 7-10. ; összefoglalás angol nyelven
Date Deposited: 2020. Jan. 27. 10:36
Last Modified: 2020. Jan. 27. 10:37
URI: http://acta.bibl.u-szeged.hu/id/eprint/64713

Actions (login required)

View Item View Item