Amster Pablo and Rogers Colin: On a Neumann boundary value problem for Ermakov-Painlevé III. (2019)
Preview |
Cikk, tanulmány, mű
ejqtde_2019_069.pdf Download (408kB) | Preview |
Abstract
A Neumann-type boundary value problem is investigated for a hybrid Ermakov–Painlevé equation. Existence properties are established and a sequence of approximate solutions is investigated. In an appendix, a novel class of coupled Hamiltonian Ermakov–Painlevé III systems is introduced and shown via a reciprocal transformation to be reducible to a canonical, integrable Ermakov–Ray–Reid system.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2019 |
Number: | 69 |
ISSN: | 1417-3875 |
Page Range: | pp. 1-10 |
DOI: | 10.14232/ejqtde.2019.1.69 |
Uncontrolled Keywords: | Határérték probléma |
Additional Information: | Bibliogr.: p. 7-10. ; összefoglalás angol nyelven |
Date Deposited: | 2020. Jan. 27. 10:36 |
Last Modified: | 2021. Sep. 16. 10:42 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/64713 |
Actions (login required)
View Item |