Symmetric nonlinear functional differential equations at resonance

Dilna Nataliya and Fečkan Michal and Solovyov Mykola and Wang JinRong: Symmetric nonlinear functional differential equations at resonance. (2019)

[thumbnail of ejqtde_2019_076.pdf]
Preview
Cikk, tanulmány, mű
ejqtde_2019_076.pdf

Download (461kB) | Preview

Abstract

It is shown that a class of symmetric solutions of the scalar nonlinear functional differential equations at resonance with deviations from R → R can be investigated by using the theory of boundary-value problems. Conditions on a solvability and unique solvability are established. Examples are presented to illustrate given results. Keywords: symmetric solution, solvability, Lyapunov–Schmidt reduction method.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2019
Number: 76
ISSN: 1417-3875
Page Range: pp. 1-16
DOI: 10.14232/ejqtde.2019.1.76
Uncontrolled Keywords: Differenciálegyenlet - nemlineáris
Additional Information: Bibliogr.: p. 15-16. ; összefoglalás angol nyelven
Date Deposited: 2020. Jan. 27. 11:48
Last Modified: 2021. Sep. 16. 10:42
URI: http://acta.bibl.u-szeged.hu/id/eprint/64720

Actions (login required)

View Item View Item