Symmetric nonlinear functional differential equations at resonance

Dilna, Nataliya and Fečkan, Michal and Solovyov, Mykola and Wang, JinRong: Symmetric nonlinear functional differential equations at resonance. Electronic journal of qualitative theory of differential equations 76. pp. 1-16. (2019)

[img] Cikk, tanulmány, mű
ejqtde_2019_076.pdf

Download (461kB)

Abstract

It is shown that a class of symmetric solutions of the scalar nonlinear functional differential equations at resonance with deviations from R → R can be investigated by using the theory of boundary-value problems. Conditions on a solvability and unique solvability are established. Examples are presented to illustrate given results. Keywords: symmetric solution, solvability, Lyapunov–Schmidt reduction method.

Item Type: Article
Journal or Publication Title: Electronic journal of qualitative theory of differential equations
Date: 2019
Number: 76
Page Range: pp. 1-16
ISSN: 1417-3875
DOI: https://doi.org/10.14232/ejqtde.2019.1.76
Uncontrolled Keywords: Differenciálegyenlet - nemlineáris
Additional Information: Bibliogr.: p. 15-16. ; összefoglalás angol nyelven
Date Deposited: 2020. Jan. 27. 11:48
Last Modified: 2020. Jan. 27. 11:48
URI: http://acta.bibl.u-szeged.hu/id/eprint/64720

Actions (login required)

View Item View Item