CHRONOPOTENTIOMETRIC STUDY OF NICOTINAMIDE (VITAMIN B₃)

<u>Tanja Brezo-Borjan¹</u>, Zorica Stojanović¹, Zvonimir Suturović¹, Snežana Kravić¹, Ana Đurović¹

¹Faculty of Technology, University of Novi Sad, 21000, Novi Sad, Bul. cara Lazara 1, Serbia e-mail: tanja.brezo@tf.uns.ac.rs

Abstract

The electrochemical behavior of nicotinamide, a vitamer of vitamin B₃, was studied employing adsorptive stripping chronopotentiometry. Mercury film electrode was used as the working electrode, whereas the Ag/AgCl (3.5 mol/l KCl) and a platinum wire were used as the reference and the auxiliary electrode, respectively. The most important experimental and instrumental parameters were optimized and proposed method was validated. Citrate buffer of pH 6 (0.05 mol/l) was used as the optimal supporting electrolyte. The analytical signal of vitamin B₃ was the highest and sharpest in quiescent solutions, leading to the conclusion that no stirring during the accumulation step was needed. The appropriate experimental conditions were as follows: accumulation potential of -1.405 V, accumulation time of 15 s in a quiescent solution and oxidation current in the range of $1.4 - 15.1 \mu A$. The thickness of the mercury film was investigated and optimized as well, with the optimal value being 129.82 nm, which corresponded to the deposition time of 240 s from a 0.2 g/l Hg^{2+} ion solution. A well-defined oxidation wave belonging to nicotinamide appeared at about -250 mV. The linearity of the analytical signal was achieved in two concentration ranges: 5 - 25 mg/l and 10 - 100 mg/l. The calculated limit of detection (LOD) and limit of quantitation (LOQ) values were 2.20 mg/l and 6.66 mg/l, respectively. The precision of the developed method was acceptable (relative standard deviation (RSD) < 3.90%). Further study is in progress to apply proposed method to the determination of nicotinamide in pharmaceutical preparations.

Acknowledgements

The financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project III 46009) is gratefully acknowledged.