DIRECT PHOTOLYSIS OF FUMONISIN B1 IN AQUEOUS MEDIUM

Ivana Jevtić¹, Sandra Jakšić², Maria Uzelac³, Biljana Abramović³

¹Higher Medical and Business-Technological School of Applied Studies, Šabac, Hajduk Veljkova 10, Šabac, Serbia

 ²Scientific Veterinary Institute "Novi Sad", Rumenački put 20, Novi Sad, Serbia
³University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
iii biljana.abramovic@dh.uns.ac.rs

Abstract

Fumonisins (FBs), secondary metabolites produced by fungi of the genus Fusarium [1], represent a major threat as potential organic pollutants. The FBs have been detected in different types of water [2], as well as produced them by fungi in untreated surface water [3]. Advanced Oxidation Processes (AOPs), have a high potential for water purification, including the removal of hazardous substances and pathogens from different types of water. AOPs are based on physicochemical processes that produce mainly hydroxyl radicals ([•]OH), representing primary oxidants, which can lead to complete mineralization of pollutants. These processes can be initiated by UV or solar radiation. The photocatalytic degradation has become a powerful method for degradation and transformation of aflatoxin B_1 [4], zearalenone [5], and deoxynivalenol [6] into harmless substances. In this paper, we have investigated optimization of high performance liquid chromatography with fluorescence detector method for monitoring the stability of fumonisins B₁ (FB₁), B₂ (FB₂), and B₃ (FB₃) solutions as well as the efficiency of FB₁ degradation using direct photolysis under UV and solar radiation in ultrapure water. It was found that the sensitivity and separation of the FB₁ peak from o-phthalialdehyde-2-mercaptoethanol (used for derivatization) was optimally at isocratic elution using the MeOH–NaH₂PO₄ mobile phase, at a ratio of 75 : 25 (v/v). When studying the efficiency of direct photolysis of 1.47×10^{-6} mol/dm³ solution of FB₁ it was found that after 180 min of irradiation degradation efficiency was 88% using UV and 76% using solar radiation at pH 8.2. Also, the effect of pH in the range from 4.0 to 10.0 on the efficiency of direct photolysis of FB₁ was examined.

Acknowledgments

The authors acknowledge financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. 172042).

References

[1] K.A. Voss, G.W. Smith, W.M. Haschek, Anim. Feed Sci. Tech. 137 (2007) 299.

[2] A. Waśkiewicz, J. Bocianowski, A. Perczak, P. Goliński, Sci. Total Environ. 15 (2015) 524.

[3] B.R. Oliveira, A.T. Mata, J.P. Ferreira, M.T. Barreto Crespo, V.J. Pereira, M.R. Bronze, Environ. Sci. Pollut. Res. 25 (2018) 17519.

[4] R. Liu, M. Chang, Q. Jin, J. Huang, Y. Liu, X. Wang, Eur. Food Res. Technol. 233 (2011) 1007.

[5] E.S. Emídio, V. Calisto, M-R.R.R. de Marchi, V.I. Esteves, Chemosphere 193 (2017) 146.

[6] X. Bai, C. Sun, D. Liu, X. Luo, D. Li, J. Wang, N. Wang, X. Chang, R. Zong, Y. Zhu, Appl. Catal. B-Environ. 204 (2017) 11.