Hosseini Amin and Karizaki Mehdi Mohammadzadeh: Functional equations characterizing σ-derivations. In: Acta scientiarum mathematicarum, (85) 3-4. pp. 431-440. (2019)
Cikk, tanulmány, mű
math_085_numb_003-004_431-440.pdf Restricted to: SZTE network Download (168kB) |
Abstract
The main purpose of this article is to prove the following result: Forintegers m,n with m≥0,n≥0, and m+n6= 0, let R be an(m+n+2)!-torsionfree prime ring with the identity elemente. Suppose thatd, σ:R → Rare two additive mappings such that σ is a monomorphism with σ(e) =e, and d(R)⊆σ(R). If d and σ satisfy both of the equations d(xy)(σ(z)−z)−d(x)(σ(yz)−σ(y)z) +σ(xy)d(z)−σ(x)(d(yz)−d(y)z) = O and d(xm+n+1) = (m+n+ 1)σ(xm)d(x)σ(xn)for allx, y, z∈ R, then d is a σ-derivation.
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2019 |
Volume: | 85 |
Number: | 3-4 |
ISSN: | 2064-8316 |
Page Range: | pp. 431-440 |
Related URLs: | http://acta.bibl.u-szeged.hu/66425/ |
DOI: | 10.14232/actasm-018-594-6 |
Uncontrolled Keywords: | Funkcionálegyenletek - deriváció |
Additional Information: | Bibliogr: p. 439-440. |
Date Deposited: | 2020. Apr. 23. 12:00 |
Last Modified: | 2021. Mar. 25. 15:34 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/66325 |
Actions (login required)
View Item |