Functional equations characterizing σ-derivations

Hosseini Amin and Karizaki Mehdi Mohammadzadeh: Functional equations characterizing σ-derivations. In: Acta scientiarum mathematicarum, (85) 3-4. pp. 431-440. (2019)

[thumbnail of math_085_numb_003-004_431-440.pdf] Cikk, tanulmány, mű
math_085_numb_003-004_431-440.pdf
Restricted to: SZTE network

Download (168kB)

Abstract

The main purpose of this article is to prove the following result: Forintegers m,n with m≥0,n≥0, and m+n6= 0, let R be an(m+n+2)!-torsionfree prime ring with the identity elemente. Suppose thatd, σ:R → Rare two additive mappings such that σ is a monomorphism with σ(e) =e, and d(R)⊆σ(R). If d and σ satisfy both of the equations d(xy)(σ(z)−z)−d(x)(σ(yz)−σ(y)z) +σ(xy)d(z)−σ(x)(d(yz)−d(y)z) = O and d(xm+n+1) = (m+n+ 1)σ(xm)d(x)σ(xn)for allx, y, z∈ R, then d is a σ-derivation.

Item Type: Article
Journal or Publication Title: Acta scientiarum mathematicarum
Date: 2019
Volume: 85
Number: 3-4
ISSN: 2064-8316
Page Range: pp. 431-440
Related URLs: http://acta.bibl.u-szeged.hu/66425/
DOI: 10.14232/actasm-018-594-6
Uncontrolled Keywords: Funkcionálegyenletek - deriváció
Additional Information: Bibliogr: p. 439-440.
Date Deposited: 2020. Apr. 23. 12:00
Last Modified: 2021. Mar. 25. 15:34
URI: http://acta.bibl.u-szeged.hu/id/eprint/66325

Actions (login required)

View Item View Item