Chebyshev polynomials on circular arcs. In: Acta scientiarum mathematicarum, (85) 3-4. pp. 629-649. (2019)
![]() |
Cikk, tanulmány, mű
math_085_numb_003-004_629-649.pdf Restricted to: SZTE network Download (304kB) |
Abstract
In this paper, we give anexplicit representation of the complex Chebyshev polynomials on a given arc of the unit circle (in the complex plane)in terms of real Chebyshev polynomials on two symmetric intervals (on thereal line). The real Chebyshev polynomials, for their part, can be expressedvia a conformal mapping with the help of Jacobian elliptic and theta functions,which goes back to the work of Akhiezer in the 1930’s
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2019 |
Volume: | 85 |
Number: | 3-4 |
ISSN: | 2064-8316 |
Page Range: | pp. 629-649 |
Related URLs: | http://acta.bibl.u-szeged.hu/66425/ |
DOI: | 10.14232/actasm-018-343-y |
Uncontrolled Keywords: | Csebisev-polinomok, Körív, Jacobi elliptikus függvény, Jacobi théta függvény |
Additional Information: | Bibliogr.: p. 648-649. |
Date Deposited: | 2020. Apr. 23. 14:11 |
Last Modified: | 2021. Mar. 25. 15:34 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/66337 |
Actions (login required)
![]() |
View Item |