Chebyshev polynomials on circular arcs

Chebyshev polynomials on circular arcs. In: Acta scientiarum mathematicarum, (85) 3-4. pp. 629-649. (2019)

[thumbnail of math_085_numb_003-004_629-649.pdf] Cikk, tanulmány, mű
math_085_numb_003-004_629-649.pdf
Restricted to: SZTE network

Download (304kB)

Abstract

In this paper, we give anexplicit representation of the complex Chebyshev polynomials on a given arc of the unit circle (in the complex plane)in terms of real Chebyshev polynomials on two symmetric intervals (on thereal line). The real Chebyshev polynomials, for their part, can be expressedvia a conformal mapping with the help of Jacobian elliptic and theta functions,which goes back to the work of Akhiezer in the 1930’s

Item Type: Article
Journal or Publication Title: Acta scientiarum mathematicarum
Date: 2019
Volume: 85
Number: 3-4
ISSN: 2064-8316
Page Range: pp. 629-649
Related URLs: http://acta.bibl.u-szeged.hu/66425/
DOI: 10.14232/actasm-018-343-y
Uncontrolled Keywords: Csebisev-polinomok, Körív, Jacobi elliptikus függvény, Jacobi théta függvény
Additional Information: Bibliogr.: p. 648-649.
Date Deposited: 2020. Apr. 23. 14:11
Last Modified: 2021. Mar. 25. 15:34
URI: http://acta.bibl.u-szeged.hu/id/eprint/66337

Actions (login required)

View Item View Item