Kondratieva Liudmila A. and Romanov Aleksandr V.: Inertial manifolds and limit cycles of dynamical systems in Rn. (2019)
Preview |
Cikk, tanulmány, mű
ejqtde_2019_096.pdf Download (426kB) | Preview |
Abstract
We show that the presence of a two-dimensional inertial manifold for an ordinary differential equation in Rn permits reducing the problem of determining asymptotically orbitally stable limit cycles to the Poincaré–Bendixson theory. In the case n = 3 we implement such a scenario for a model of a satellite rotation around a celestial body of small mass and for a biochemical model.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2019 |
Number: | 96 |
ISSN: | 1417-3875 |
Page Range: | pp. 1-11 |
DOI: | 10.14232/ejqtde.2019.1.96 |
Uncontrolled Keywords: | Differenciálegyenlet - közönséges |
Additional Information: | Bibliogr.: 11. p. ; összefoglalás angol nyelven |
Date Deposited: | 2020. Jan. 28. 08:34 |
Last Modified: | 2021. Sep. 16. 10:42 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/66363 |
Actions (login required)
![]() |
View Item |