Inertial manifolds and limit cycles of dynamical systems in Rn

Kondratieva Liudmila A. and Romanov Aleksandr V.: Inertial manifolds and limit cycles of dynamical systems in Rn. (2019)

[thumbnail of ejqtde_2019_096.pdf]
Preview
Cikk, tanulmány, mű
ejqtde_2019_096.pdf

Download (426kB) | Preview

Abstract

We show that the presence of a two-dimensional inertial manifold for an ordinary differential equation in Rn permits reducing the problem of determining asymptotically orbitally stable limit cycles to the Poincaré–Bendixson theory. In the case n = 3 we implement such a scenario for a model of a satellite rotation around a celestial body of small mass and for a biochemical model.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2019
Number: 96
ISSN: 1417-3875
Page Range: pp. 1-11
DOI: 10.14232/ejqtde.2019.1.96
Uncontrolled Keywords: Differenciálegyenlet - közönséges
Additional Information: Bibliogr.: 11. p. ; összefoglalás angol nyelven
Date Deposited: 2020. Jan. 28. 08:34
Last Modified: 2021. Sep. 16. 10:42
URI: http://acta.bibl.u-szeged.hu/id/eprint/66363

Actions (login required)

View Item View Item