Hardy type unique continuation properties for abstract Schrödinger equations and applications

Shakhmurov, Veli: Hardy type unique continuation properties for abstract Schrödinger equations and applications. Electronic journal of qualitative theory of differential equations 97. pp. 1-27. (2019)

[img] Cikk, tanulmány, mű
ejqtde_2019_097.pdf

Download (537kB)

Abstract

In this paper, Hardy’s uncertainty principle and unique continuation properties of Schrödinger equations with operator potentials in Hilbert space-valued L 2 classes are obtained. Since the Hilbert space H and linear operators are arbitrary, by choosing the appropriate spaces and operators we obtain numerous classes of Schrödinger type equations and its finite and infinite many systems which occur in a wide variety of physical systems.

Item Type: Article
Journal or Publication Title: Electronic journal of qualitative theory of differential equations
Date: 2019
Number: 97
Page Range: pp. 1-27
ISSN: 1417-3875
DOI: https://doi.org/10.14232/ejqtde.2019.1.97
Uncontrolled Keywords: Schrödinger egyenletek, Differenciaegyenlet
Additional Information: Bibliogr.: p. 26-27. ; összefoglalás angol nyelven
Date Deposited: 2020. Jan. 28. 08:55
Last Modified: 2020. Jan. 28. 08:55
URI: http://acta.bibl.u-szeged.hu/id/eprint/66364

Actions (login required)

View Item View Item