Hardy type unique continuation properties for abstract Schrödinger equations and applications

Shakhmurov Veli: Hardy type unique continuation properties for abstract Schrödinger equations and applications. (2019)

[thumbnail of ejqtde_2019_097.pdf]
Preview
Cikk, tanulmány, mű
ejqtde_2019_097.pdf

Download (537kB) | Preview

Abstract

In this paper, Hardy’s uncertainty principle and unique continuation properties of Schrödinger equations with operator potentials in Hilbert space-valued L 2 classes are obtained. Since the Hilbert space H and linear operators are arbitrary, by choosing the appropriate spaces and operators we obtain numerous classes of Schrödinger type equations and its finite and infinite many systems which occur in a wide variety of physical systems.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2019
Number: 97
ISSN: 1417-3875
Page Range: pp. 1-27
DOI: 10.14232/ejqtde.2019.1.97
Uncontrolled Keywords: Schrödinger egyenletek, Differenciaegyenlet
Additional Information: Bibliogr.: p. 26-27. ; összefoglalás angol nyelven
Date Deposited: 2020. Jan. 28. 08:55
Last Modified: 2021. Sep. 16. 10:42
URI: http://acta.bibl.u-szeged.hu/id/eprint/66364

Actions (login required)

View Item View Item