Huang Shao-Yuan and Hung Kuo-Chih and Wang Shin-Hwa: A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem. (2019)
Preview |
Cikk, tanulmány, mű
ejqtde_2019_099.pdf Download (4MB) | Preview |
Abstract
We study the global bifurcation and exact multiplicity of positive solutions for u 00(x) + λ fε(u) = 0, − 1 < x < 1, u(−1) = u(1) = 0, where λ > 0 is a bifurcation parameter, ε ∈ Θ is an evolution parameter, and Θ ≡ (σ1, σ2) is an open interval with 0 ≤ σ1 < σ2 ≤ ∞. Under some suitable hypotheses on fε , we prove that there exists ε0 ∈ Θ such that, on the (λ, kuk∞)-plane, the bifurcation curve is S-shaped for σ1 < ε < ε0 and is monotone increasing for ε0 ≤ ε < σ2. We give an application to prove global bifurcation of bifurcation curves for the one-dimensional perturbed Gelfand problem.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2019 |
Number: | 99 |
ISSN: | 1417-3875 |
Page Range: | pp. 1-25 |
DOI: | 10.14232/ejqtde.2019.1.99 |
Uncontrolled Keywords: | Gelfand probléma, Bifurkáció |
Additional Information: | Bibliogr.: p. 24-25. ; összefoglalás angol nyelven |
Date Deposited: | 2020. Jan. 28. 09:35 |
Last Modified: | 2021. Sep. 16. 10:42 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/66366 |
Actions (login required)
![]() |
View Item |