Optimal control problem for 3D micropolar fluid equations

Mallea-Zepeda, Exequiel and Medina, Luis: Optimal control problem for 3D micropolar fluid equations. Electronic journal of qualitative theory of differential equations 3. pp. 1-16. (2020)

[img] Cikk, tanulmány, mű
ejqtde_2020_003.pdf

Download (463kB)

Abstract

In this paper we study an optimal control problem related to strong solutions of 3D micropolar fluid equations. We deduce the existence of a global optimal solution with distributed control and, using a Lagrange multipliers theorem, we derive firstorder optimality conditions for local optimal solutions.

Item Type: Article
Journal or Publication Title: Electronic journal of qualitative theory of differential equations
Date: 2020
Number: 3
Page Range: pp. 1-16
ISSN: 1417-3875
DOI: https://doi.org/10.14232/ejqtde.2020.1.3
Uncontrolled Keywords: Differenciaegyenlet
Additional Information: Bibliogr.: p. 14-16. ; összefoglalás angol nyelven
Date Deposited: 2020. Jan. 28. 09:52
Last Modified: 2020. Jan. 28. 09:52
URI: http://acta.bibl.u-szeged.hu/id/eprint/66369

Actions (login required)

View Item View Item