Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term

Papageorgiou Nikolaos S.; Scapellato Andrea: Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term. (2020)

[thumbnail of ejqtde_2020_004.pdf]
Előnézet
Teljes mű
ejqtde_2020_004.pdf

Letöltés (506kB) | Előnézet

Absztrakt (kivonat)

We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifurcation type theorem describing the changes in the set of positive solutions as the parameter λ > 0 varies. We also show that for every admissible parameter λ > 0, the problem has a minimal positive solution uλ and determine the monotonicity and continuity properties of the map λ 7→ uλ.

Mű típusa: Folyóirat
Folyóirat/könyv/kiadvány címe: Electronic journal of qualitative theory of differential equations
Dátum: 2020
Szám: 4
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2020.1.4
Kulcsszavak: Pozitív megoldás, Differenciaegyenlet
Megjegyzések: Bibliogr.: p. 18-19. ; összefoglalás angol nyelven
Feltöltés dátuma: 2020. jan. 23. 11:02
Utolsó módosítás: 2021. okt. 20. 13:52
URI: http://acta.bibl.u-szeged.hu/id/eprint/66422
Bővebben:
Tétel nézet Tétel nézet