Papageorgiou Nikolaos S. and Scapellato Andrea: Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term. (2020)
Preview |
Teljes mű
ejqtde_2020_004.pdf Download (506kB) | Preview |
Abstract
We consider a nonlinear boundary value problem driven by the (p, 2)- Laplacian, with a (p − 1)-superlinear reaction and a parametric concave boundary term (a “concave-convex” problem). Using variational tools (critical point theory) together with truncation and comparison techniques, we prove a bifurcation type theorem describing the changes in the set of positive solutions as the parameter λ > 0 varies. We also show that for every admissible parameter λ > 0, the problem has a minimal positive solution uλ and determine the monotonicity and continuity properties of the map λ 7→ uλ.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2020 |
Number: | 4 |
ISSN: | 1417-3875 |
DOI: | 10.14232/ejqtde.2020.1.4 |
Uncontrolled Keywords: | Pozitív megoldás, Differenciaegyenlet |
Additional Information: | Bibliogr.: p. 18-19. ; összefoglalás angol nyelven |
Date Deposited: | 2020. Jan. 23. 11:02 |
Last Modified: | 2021. Oct. 20. 13:52 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/66422 |
Actions (login required)
![]() |
View Item |