Reliable bounding zones and inconsistency measures for GPS positioning using geometrical constraints

Dbouk Hani; Schön Steffen: Reliable bounding zones and inconsistency measures for GPS positioning using geometrical constraints. In: Acta cybernetica, (24) 3. pp. 573-591. (2020)

[thumbnail of cybernetica_024_numb_003_573-591.pdf]
Előnézet
Cikk, tanulmány, mű
cybernetica_024_numb_003_573-591.pdf

Letöltés (6MB) | Előnézet

Absztrakt (kivonat)

Reliable confidence domains for positioning with Global Navigation Satellite System (GNSS) and inconsistency measures for the observations are of great importance for any navigation system, especially for safety critical applications. In this work, deterministic error bounds are introduced in form of intervals to assess remaining observation errors. The intervals can be determined based on expert knowledge or - as in our case - based on a sensitivity analysis of the measurement correction process. Using convex optimization, bounding zones are computed for GPS positioning, which satisfy the geometrical constraints imposed by the observation intervals. The bounding zone is a convex polytope. When exploiting only the navigation geometry, a confidence domain is computed in form of a zonotope. We show that the relative volume between the polytope and the zonotope can be considered as an inconsistency measure. A small polytope volume indicates bad consistency of the observations. In extreme cases, empty sets are obtained which indicates large outliers. We explain how shape and volume of the polytopes are related to the positioning geometry. Furthermore, we propose a new concept of Minimum Detectable Biases. Using the example of the Klobuchar ionospheric model and Saastamoinen tropospheric model, we show how observation intervals can be determined via sensitivity analysis of these correction models for a real measurement campaign. Taking GPS code data from simulations and real experiments, a comparison analysis between the proposed deterministic bounding method and the classical least-squares adjustment has been conducted in terms of accuracy and reliability. It shows that the computed polytopes always enclose the reference trajectory. In case of large outliers, large position deviations persist in the least-squares solution while the polytope algorithm yields empty sets and thus successfully detects the cases with outliers.

Mű típusa: Cikk, tanulmány, mű
Rovatcím: Interval methods in control and robotics
Befoglaló folyóirat/kiadvány címe: Acta cybernetica
Dátum: 2020
Kötet: 24
Szám: 3
ISSN: 0324-721X
Oldalak: pp. 573-591
Nyelv: angol
Kiadó: University of Szeged, Institute of Informatics
Kiadás helye: Szeged
Konferencia neve: Summer Workshop on Interval Methods (11.) (2018) (Rostock)
Befoglaló mű URL: http://acta.bibl.u-szeged.hu/69263/
DOI: 10.14232/actacyb.24.3.2020.16
Kulcsszavak: Számítástechnika, Kibernetika, Vezérléstechnika, Robotika
Megjegyzések: Bibliogr.: p. 589-591. ; összefoglalás angol nyelven
Szakterület: 01. Természettudományok
01. Természettudományok > 01.02. Számítás- és információtudomány
Feltöltés dátuma: 2020. júl. 30. 13:23
Utolsó módosítás: 2022. jún. 21. 09:21
URI: http://acta.bibl.u-szeged.hu/id/eprint/69272
Bővebben:
Tétel nézet Tétel nézet