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Abstract

State estimation for switched systems with time-varying parameters has
received a great attention during the past decades. In this paper, a new ap-
proach to design an interval observer for this class of systems is proposed.
The scheduling vector is described by a convex combination so that the vary-
ing parameters belong into polytopes. The considered system is also subject
to measurement noise and state disturbances which are supposed to be un-
known but bounded. The proposed method guarantees both cooperativity
and Input to State Stability (ISS) of the upper and lower observation errors.
Sufficient conditions are given in terms of Linear Matrix Inequalities (LMIs)
using a common quadratic Lyapunov function. Finally, a numerical example
is provided to show the effectiveness of the designed observer.

Keywords: interval observer, continuous-time LPV switched systems, poly-
topic parameter dependence, Lyapunov theory

1 Introduction

Over the past few decades, the problem of state estimation for dynamic systems
has received a huge attention. Indeed, for economic reasons of feasibility or techno-
logical ones, state variables are not always measurable. In the linear case, the state
estimation problem has been extensively studied by considering for example Luen-
berger observers in the deterministic frameworks or Kalman filters in the stochastic
settings. In the nonlinear case, state estimation methods are usually based on a
system transformation into a canonical form which may be an obstruction in prac-
tice. Accordingly, a broad class of nonlinear systems are presented in a Linear
Parameter Varying (LPV) form [15, 19, 9]. The main advantage of this strategy is
that it allows one to apply several developed frameworks for linear systems. In the
literature, many researches have been carried out about LPV systems [1, 10, 24].
However in practice, systems are often subject to exogenous uncertainties (state
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disturbance, measurement noise) and endogenous ones (parametric uncertainties).
Then, the design of classical observers can be complicated to perform in the pres-
ence of uncertainties. The interval observers can be considered as an alternative
option to take into account these uncertainties in the estimation procedure.

In a context with unknown but bounded uncertainties, interval estimation con-
sists in evaluating an admissible set for a state vector at each instant of time. In
the recent years, many methods for designing interval observers have been proposed
for linear and nonlinear systems. In [20, 25, 30], interval observers are designed for
linear time-invariant systems and for time-invariant discrete-time systems in [4].
The cooperativity properties are studied with and without state transformation.
In [23], interval state estimation is addressed for a class of nonlinear continuous-
time systems. In [3, 27, 21] interval observers for linear time-varying (LTV) systems
are introduced where a new approach based on time-varying change of coordinates
is provided in order to ensure the cooperativity of the observer error in new coor-
dinates. In [13], two approaches for the transformation of state equations into a
cooperative form are presented, a time-invariant transformation for systems with
purely real eigenvalues and a time-varying transformation in the case of conjugate-
complex eigenvalues. In [2], interval state estimation is proposed for continuous-
time LPV systems under the assumption that the vector of scheduling parameters
is not available for measurements. A fault detection procedure and a fault toler-
ant control based on interval observers are proposed in [31, 14] for LPV systems.
A class of LPV systems containing both measured and unmeasured time-varying
uncertain parameters is considered in [29] where a polytopic formulation of the
estimation problem is developed.

In the literature, an increasing attention has been devoted to switched systems
due to their widespread applications in several fields mainly in aerospace, electrical
and automotive devices, flight control systems and biological networks [17, 18, 28].
Switched systems are a class of hybrid systems. They involve a finite number of
subsystems and a switching rule which governs the switching among them. Interval
observers for a class of linear time-invariant switched systems with disturbances is
developed in [6, 22]. In [22], the problem of state estimation is investigated for
Switched Linear System (SLS). New conditions of cooperativity are given in dis-
crete time instants in order to guarantee the nonnegativity of the estimation errors.
As presented for instance in [5], an interval observer is developed for SLS under the
assumption that the disturbances and the measurement noise are bounded. The
design of interval observer for discrete-time switched systems is also addressed in
[7] using a time-varying transformation. As far as interval observers for SLS are
studied, interval state estimation of nonlinear switched systems has been also con-
sidered. Based on the monotone system theory, an interval observer is designed in
[8] to estimate the state of nonlinear switched systems with an average dwell time
condition (ADT) using the upper and lower observer variables. In [12], a synchron-
uous interval observer is designed for switched LPV continuous-time systems using
multiple quadratic ISS-Lyapunov functions.

Interval observer design techniques are usually based on the theory of posi-
tive systems, which require that in the case of continuous systems the observer
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error state matrix is Metzler. Unfortunately, this assumption is restrictive. Some
methods propose a coordinate transformation to cope with the Metzler constraint.
However, when systems are affected by time-varying parameters, applying a change
of coordinates can constitute an infinite dimensional problem. This motivates the
present work, which is devoted to propose a finite dimensional relaxation for both
cooperativity and ISS conditions. To the best of the authors knowledge, the de-
sign of an interval observer for this class of systems using a polytopic time varying
parameters has not been fully studied in the literature.

In this paper, the design of an interval observer for a class of continuous-time
LPV switched systems subject to disturbances and time-varying parameters is ad-
dressed. The measurement noise and the state disturbances are assumed to be
unknown but bounded with known bounds. We assume that the scheduling vector
is described by a convex combination so that the varying parameters belong into
polytopes. The main advantage of the new proposed approach is that the polytopic
varying parameters are explicitly incorporated in the observer design in order to
reduce the conservatism. The cooperativity property and the ISS of the estimation
errors are ensured. Sufficient ISS conditions are given in terms of LMIs by adopting
common quadratic Lyapunov functions.

The outline of this paper is as follows. Some basic preliminaries about conti-
nuous-time interval estimation are given in Section 2. The main contributions are
developed in Section 3 and Section 4. Simulation results are shown in Section 4.
Finally, the paper is concluded in Section 5.

2 Notation and preliminaries

Throughout this paper, R and N denote respectively the sets of real and natural
numbers. The symbol ‖. ‖2 denotes the Euclidean norm in Rn and | . | is the
componentwise absolute value in Rn. For any function u : R≥0 → Rn, we denote
by ‖u‖∞ = sup{‖u(t)‖2, t ≥ 0} ≤ ∞ the (essential) supremum norm. In the case
of u is bounded, this is the standard L∞ norm. The lower and upper bounds of
a variable x are respectively denoted by x and x. We designate by Jm (m × 1) a
vector whose elements are equal to 1 and In is the identity matrix. We denote by
I = 1, N, N ∈ N the set of integers {1, ..., N}. P � 0, P � 0 and P = PT mean
respectively that P is positive definite, positive semi-definite and symmetric. In the
sequel, the following inequalities ≤, ≥, < and > should be interpreted elementwise
for vectors as well as for matrices. We recall that a function ζ is a K-function
if it is continuous, strictly increasing and ζ(0) = 0; it is a K∞-function if it is a
K-function and also ζ(s)→∞ as s→∞; it is a KL-function if for each fixed t ≥ 0
the function ζ(., t) is a K-function and for each fixed s ≥ 0 it is decreasing to zero
as t→∞.
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2.1 Continuous-time switched systems

A continuous-time switched system can be described by{
ẋ (t) = Aσ(t)x (t) +Bσ(t)u (t) + wσ(t) (t)
y (t) = Cx (t) + v (t)

, σ (t) ∈ I (1)

where x ∈ Rn, u ∈ Rl, y ∈ Rm, wσ ∈ Rn and v ∈ Rm are respectively the state
vector, the input and the output, the disturbances and the measurement noise.
The switching between subsystems is realized via a switching signal, a piecewise
constant function, σ (t) : R+ → I.

2.2 Cooperative continuous-time linear systems

Definition 1. A matrix A ∈ Rn×n is called Metzler if there exists ε ∈ R+ such
that

A+ εIn ≥ 0. (2)

Lemma 1. Consider the system described by

ẋ (t) = Ax (t) + u (t) (3)

if A is Metzler, the input u satisfies the inequality u (t) ≥ 0 and the initial condition
x(0) is chosen as x(0) ≥ 0, then the state x stays nonnegative for all t ≥ 0. The
system (3) is said to be cooperative or nonnegative.

Lemma 2. [11] Consider two vectors u, v ∈ Rn, then

2uTMv ≤ 1
%u

TMu+ %vTMv (4)

holds for any constant % > 0 and any positive definite matrix M .

2.3 Common Lyapunov functions

Lemma 3. [16] Let P ∈ Rn×n be a symmetric positive definite matrix that satisfies
the LMIs

Aq
TP + PAq ≺ 0 ,∀ q ∈ I (5)

then V (x) = xTPx is a Common Quadratic Lyapunov Function for the system (1).

2.4 Input to State Stability

Definition 2. [26] The following system

ẋ = f(x, u)

is said to be Input to State Stable(ISS) if there exist a KL-function κ and a K-
function ϕ such that for each input u ∈ Lm∞ and each ` ∈ Rn, it holds that

‖x(t, `, u)‖2 ≤ κ(‖`‖2, t) + ϕ(‖u‖∞),∀t ≥ 0
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3 System description and problem statement

Consider the following LPV switched system{
ẋ (t) = Aσ(t)(ηq)x (t) +Bσ(t)(ηq)u (t) + wσ(t) (t)
y (t) = Cx (t) + v (t)

, σ (t) ∈ I (6)

where x ∈ Rn, u ∈ Rl, y ∈ Rm, wσ ∈ Rn and v ∈ Rm are respectively the state
vector, the input and the output, the disturbance and the measurement noise. We
denote respectively by Aσ(t) ∈ Rn×n and Bσ(t) ∈ Rn×l the state matrices and
the input matrices, these matrices are defined with time-varying parameters. The
matrix C ∈ Rm×n is the output matrix. The switching between the subsystems is
realized via a switching signal, a piecewise constant function, σ (t) : R+ → I. In the
sequel, the index q = σ (t) specifies, at each instant of time, the system currently
being followed, q ∈ I = 1, N, N ∈ N, N is the number of linear subsystems.
For each subsystem, we denote by ηq = [ηq1 , ..., ηqr ]T the collection of measured
time varying parameters, which are constrained in polytopes Eq; Eq depends on

the active mode. We denote by η
(i)
q , i = 1, ..., g the vertices of each Eq. The

measurement noise and the state disturbance are supposed to be unknown but
bounded.

Assumption 1. We assume that the state matrices Aq(ηq) and the input Bq(ηq)
depend affinely on ηq

Aq(ηq) = Aq0 + ηq1Aq1 + ...+ ηqrAqr
Bq(ηq) = Bq0 + ηq1Bq1 + ...+ ηqrBqr

, q ∈ I. (7)

Based on this representation and by assuming that the vectors ηq are measurable,
it is worth pointing out that the system matrices are point-valued matrices for the
observer implementation but they are overbounded by the convex domain.

As widely known, in several areas of automatic control, one of the main difficulties
is how to deal with uncertainties. Therefore, the objective is to design an inter-
val observer for a continuous-time LPV switched system subject to measured time
varying parameters, unknown but bounded measurement noise and state distur-
bance. LMI conditions for cooperativity and ISS of the upper and lower estimation
errors shown in the sequel are relaxed thanks to the polytopic shape of the system
parameters. They are expressed on the vertices of each polytope in order to avoid
any infinite dimensional problem due to the time varying measured parameters.
We will consider for that end a particular form of interval observer gains based on
the polytopic form of the time-varying parameters.

4 Main contribution

In this part, we introduce the following assumptions in order to design an interval
observer for continuous-time LPV switched systems.
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Notation 1. We denote by Aq(ηq
(i)), i = 1, . . . , g the vertices of the state matrix

Aq(ηq) of each polytope Eq and Lq(ηq
(i)) the vertices of the observer gain.

Assumption 2. The initial state x(0) satisfies x(0) ≤ x(0) ≤ x(0) with known
x(0), x(0) ∈ Rn.

Assumption 3. The measurement noise and the state disturbance are assumed to
be unknown but bounded with a priori known bounds such that

wq ≤ wq (t) ≤ wq, |v (t) | ≤ vJm (8)

where wq, wq ∈ Rn and v is a scalar.

Assumption 4. There exist Lq(η
(i)
q ) ∈ Rn×m such that Aq(η

(i)
q ) − Lq(η(i)q )C are

Metzler for all η
(i)
q ∈ Eq, i = 1, ..., g.

Assumption 5. For all vertices of Eq and for all q ∈ I, the pairs (Aq(η
(i)
q ), C)

are detectable.

Assumptions 2-4 are required to ensure the condition of cooperativity. Assumption
3 is common in the literature of interval observers where the state disturbance
and the measurement noise are supposed to be unknown but bounded with known
bounds. Assumption 5 must be satisfied to build the upper and lower bounds of
the continuous state. The detectability of the system is a classical assumption in
the field of state estimation. In an approach, this assumption needs to be satisfied
for the vertices of all polytopes in order to design the proposed observer.
The aim is to derive two variables x (t) and x (t) such that x (t) ≤ x (t) ≤ x (t),
∀ t ≥ 0 holds despite the state disturbance and the measurement noise provided
that Assumption 2 is satisfied. Additionally, the proposed interval observer will
guarantee ISS of the estimation errors.

4.1 Cooperativity of the estimation errors

In this part, an interval observer for continuous-time LPV switched systems subject
to disturbances is considered and the cooperativity property of the observation error
is relaxed thanks to the polytopic form of the time-varying parameters.

Theorem 1. Let Assumptions 2-4 and 5 be satisfied then the states of{
ẋ = (Aq(ηq)− Lq(ηq)C)x+Bq(ηq)u+ wq + Lq(ηq)y + |Lq(ηq)|vJm
ẋ = (Aq(ηq)− Lq(ηq)C)x+Bq(ηq)u+ wq + Lq(ηq)y − |Lq(ηq)|vJm

, q ∈ I

(9)
and (6) satisfies x (t) ≤ x (t) ≤ x (t) where the observer gain Lq(ηq) has an affine
form given by

Lq(ηq) = Lq0 + ηq1Lq1 + ...+ ηqrLqr (10)

and Lqj ∈ Rn×m, j = 0, 1, ..., r, are constant matrices.
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Proof. Let Tq(ηq) = Aq(ηq) − Lq(ηq)C. Aq(ηq) and Lq(ηq) depend affinely of ηq.
Consequently Tq can be written as a convex combination form

Tq(ηq) = λ1Tq(ηq
(1)) + ...+ λgTq(ηq

(g))
= λ1

(
Aq(ηq

(1))− Lq(ηq(1))C
)

+ ...+ λg
(
Aq(ηq

(g))− Lq(ηq(g))C
)

=

g∑
i=1

λi

(
Aq(η

(i)
q )− Lq(η(i)q )C

)
(11)

with λi ≥ 0 and λ1 + ...+ λg = 1.
First of all, let e (t) = x−x and e (t) = x−x be the upper and the lower observation
errors. From (6), (9) and (11), the dynamics of the interval estimation errors are
given by

ė (t) = ẋ− ẋ
= (Aq(ηq)− Lq(ηq)C)x+Bq(ηq)u+ wq + Lq(ηq)y + |Lq(ηq)|vJm−

(Aq(ηq)x+Bq(ηq)u+ wq)
= (Aq(ηq)− Lq(ηq)(ηq)C) (x− x) + wq − wq + Lq(ηq)v + |Lq(ηq)|vJm
= (Aq(ηq)− Lq(ηq)C) e+ wq − wq + Lq(ηq)v + |Lq(ηq)|vJm

=

g∑
i=1

λi

(
Aq(ηq

(i))− Lq(ηq(i))C
)
e+ χq

(12)
where

χq = wq − wq + Lq(ηq)v + |Lq(ηq)|vJm. (13)

Similarly, we have

ė (t) =

g∑
i=1

λi

(
Aq(ηq

(i))− Lq(ηq(i))C
)
e+ χ

q

where
χ
q

= wq − wq − Lq(ηq)v + |Lq(ηq)|vJm. (14)

According to Assumption 3, it follows that χq ≥ 0 and χ
q
≥ 0. The requirement

on the cooperativity property of the matrix (Aq(ηq)− Lq(ηq)C) is relaxed thanks
to the polytopic form of the time-varying parameters. Based on (11), to show
that (Aq(ηq)− Lq(ηq)C) is Metzler is reduced to show that all matrices Aq(ηq

(i))−
Lq(ηq

(i))C, for i = 1, . . . , g, are Metzler. To that end, based on Definition 1, the

Metzler property is satisfied for all η
(i)
q :

Aq(η
(i)
q )− Lq(ηq(i))C + εIn ≥ 0,∀q ∈ I, ε ∈ R+. (15)

It follows that, from Assumption 4, the dynamics of the upper and lower errors
are cooperative. Accordingly to Lemma 1, x (t) ≤ x (t) ≤ x (t) provided that
x(0) ≤ x(0) ≤ x(0).
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4.2 Input to State Stability of the estimation errors

In order to check the boundedness of e and e, we consider a common Lyapunov
function for the estimation errors. In the following theorem, ISS conditions are
given in terms of LMIs defined at the vertices of each polytope. Indeed, by assuming
that the scheduling vector is described by a convex combination and that its time-
varying parameters belong to polytopes, LMIs and the proposed observer gains
Lq(ηq) are formulated in terms of the vertices of these polytopes.

Theorem 2. Consider the continuous-time LPV switched system (6), where Aq(ηq)
and Bq(ηq) are affine matrices on ηq and let Assumption 4 hold. If there exist a
diagonal P � 0 ∈ Rn×n, constant matrices Qq0 , ..., Qqr and scalars %q > 0, ∀q ∈ I
such that

Aq(η
(i)
q )TP + PAq(η

(i)
q )−

(
CTQq(η

(i)
q )T +Qq(η

(i)
q )C

)
+ 3

%q
P ≺ 0, ∀q ∈ I

(16)

where Qq(η
(i)
q ) are affine matrices of η

(i)
q given by

Qq(η
(i)
q ) = Qq0 + η

(i)
q1 Qq1 + ...+ η

(i)
qr Qqr (17)

with Qqj ∈ Rn×m, j = 0, 1, ..., r are constant matrices, then the observer gains
Lqj , j = 0, 1, ..., r are obtained as

Lqj = P−1Qqj (18)

and the states x, x are bounded.

Proof. For the stability analysis, ISS of the interval observer is ensured by using
a common Lyapunov function to the upper and lower estimation errors. Let us
consider the common Lyapunov function applied, first of all, to the upper estimation
error V (e) = e (t)

T
Pe (t) with P = PT � 0.

Based on (12), the derivative of V is given by

V̇ (e) = ė
T
Pe+ eTP ė

= ((Aq(ηq)− Lq(ηq)C)e+ wq − wq + Lq(ηq)v + |Lq(ηq)|vJm)
T
Pe+

eTP ((Aq(ηq)− Lq(ηq)C) e+ wq − wq + Lq(ηq)v + |Lq(ηq)|vJm)
= eT

(
(Aq(ηq)− Lq(ηq)C)TP + P (Aq(ηq)− Lq(ηq)C)

)
e+

wTq Pe− wTq Pe+ (Lq(ηq)v)TPe+ (|Lq(ηq)|vJm)TPe+
eTPwq − eTPwq + eTP (Lq(ηq)v) + eTP |Lq(ηq)|vJm

= eT
(

(Aq(ηq)− Lq(ηq)C)
T
P + P (Aq(ηq)− Lq(ηq)C)

)
e−

2eTPwq + 2eTPLq(ηq)v + 2eTPwq + 2eTP |Lq(ηq)|vJm.
(19)

Based on Lemma 2, we have

2eTP (wq − wq) ≤
1

%q
eTPe+ %q(wq − wq)TP (wq − wq),
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2eTPLq(ηq)v ≤
1

%q
eTPe+ %qv

TLq(ηq)
TPLq(ηq)v,

2eTP |Lq(ηq)| vJm ≤
1

%q
eTPe+ %qJm

T v|Lq(ηq)|TP |Lq(ηq)| vJm,

then, the derivative of V satisfies

V̇ (e) ≤ eTB1e+ C1 (20)

where

B1 = (Aq (ηq)− Lq (ηq)C)
T
P + P (Aq(ηq)− Lq(ηq)C) + 3

%q
P

=

g∑
i=1

λi

(
Aq(ηq

(i))TP + PAq(ηq
(i))− CTQq(ηq(i))T −Qq(ηq(i))C

)
+

3

%q
P

(21)

where Qq(η
(i)
q ) = PLq(η

(i)
q ), and

C1 = %q(wq − wq)TP (wq − wq) + %qv
TLq(ηq)

TPLqv+

%qJm
T v|Lq(ηq)|TP |Lq(ηq)|vJm.

(22)

Based on similar arguments, the derivate of the common Lyapunov function for the
lower estimation error is written as follow

V̇ (e) = eT
(

(Aq(ηq)− Lq(ηq)C)
T
P + P (Aq(ηq)− Lq(ηq)C)

)
e+

2eTPwq − 2eTPwq − 2eTPLq(ηq)v + 2eTP |Lq(ηq)|vJm
≤ eTB1e+ C2

(23)

where

C2 = %q(wq − wq)TP (wq − wq) + %qv
TLq(ηq)

TPLq(ηq)v+

%qJm
T v|Lq(ηq)|TP |Lq(ηq)|vJm.

(24)

From (16), we note that B1 ≺ 0. Under the Assumption 3, the uncertainties wq
and v are bounded, C1 and C2 are also bounded. Based on Definition 2, the system
(9) is ISS stable and the upper and lower estimation errors are bounded.

5 Numerical example

In this section, a numerical example is considered to illustrate the performance of
the proposed interval observer for a continuous-time LPV switched system.
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5.1 LPV switched modeling

Let us consider the continuous-time LPV switched system (6) defined with three
subsystems, N = 3. Based on the representation (7), state matrices, input matrices
and the output matrix are chosen as

A10 =

[
−2 6
−1 5

]
, A11 =

[
−1 2
−1 −1

]
, A12 =

[
2 −1
−1 −2

]
,

B10 =

[
−1 1
1 0

]
, B11 =

[
−1 1
2 3

]
, B12 =

[
2 1
1 2

]
,

A20 =

[
−3 4
−5 −2

]
, A21 =

[
−1 −3
2 −2

]
, A22 =

[
1 2
−1 −1

]
,

B20 =

[
−1 2
1.5 0

]
, B21 =

[
−1 2
1 1

]
, B22 =

[
2 2
3 2

]
,

A30 =

[
−3.5 5
−1 −2

]
, A31 =

[
−3 2
1 1

]
, A32 =

[
1 −2
−3 −3

]
,

B30 =

[
−2 1.5
1 0

]
, B31 =

[
−1 2
3 2

]
, B32 =

[
1 3
3 1

]
,

C =
[

1 −1
]
.

For simulation, x = [x1, x2]T ∈ R2 is the state, y ∈ R is the output and u = [1, 1]T ∈
R2 is the known input. It is assumed in this example that, wq (t) ∈ R2, q = 1, 2, 3,
the disturbance vector is supposed to be bounded. To that end, wq (t) is chosen as
follow: w1 (t) = [0.009, 0.001]T cos (5t) , w2 (t) = [0.002, 0.003]T cos (2t) , w3 (t) =
[0.003, 0.004]T cos (3t). v (t) represents the measurement noise: v (t) = 0.07 sin (t).
The state initial conditions are set as x(0) = [0, 0]T such that: x(0) ≤ x(0) ≤ x(0).
The measured parameter vector ηq ∈ R2, q = 1, 2, 3, is given by

η1 (t) =

[
| sin (2t) |+ 4
| cos (t) |+ 4

]
, η2 (t) =

[
|2 cos (0.2t) |+ 4
|2 cos (3t) |+ 4

]
,

η3 (t) =

[
|3 cos (0.2t) |+ 4
|3 cos (t) |+ 4

]
.

The vertices of the polytope can be easily deduced from these expressions.

5.2 Simulation results

The numerical simulation was carried out by using Matlab optimization tools
(Yalmip/Sedumi). Solving the LMIs conditions, one feasible solution is given by

P =

[
2.08 0

0 5.03

]
.
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The observer gains Lqj , for q = 1, 2, 3 and j = 0, 1, 2 are computed using the

expression (18). Thus, we have

L10 =
[

125 −49.8
]T
, L11 =

[
−46.5 25.1

]T
, L12 =

[
50.2 −23.5

]T
,

L20 =
[

129 −53.4
]T
, L21 =

[
−24.1 −12.8

]T
, L22 =

[
24.9 −10.5

]T
,

L30 =
[

128 −54.2
]T
, L31 =

[
−15.2 10.1

]T
, L32 =

[
17.6 −9.41

]T
.

Remark 1. The LMI (16) is formulated with the aim to find observer gains en-
suring the interval observer stability. In others words, the observer gains which
are functions of ηq will decide only the stability of e and e. In our example, the
goal is to check the boundedness and the positivity of e and e. Based on the pro-
posed interval observer, the disturbance and measurement noise have an influence
on the estimation errors e and e. The optimization problem can be reformulated
in order to improve its accuracy by providing a minimization of the estimation
errors. Hence, the observer gains could ensure not only the stability requirement
but also the tightness of the interval width. An optimization with respect to H∞
performance specifications could be introduced to enhance the robustness of the
observation error intervals. In other words, one will focus on computing observer
gains Lq(ηq) minimizing the following cost function

min
Lq

γ2, q = 1, ..., N

subject to
‖e‖22
‖χ‖22

≤ γ2

with e is the upper bound of the estimation error and χ is an input which takes
into account the bound of the disturbance and noises. γ is a positive real number.
Accordingly, the effect of the known bound of the uncertainties χ = wq − wq +
Lq(ηq)v+ |Lq(ηq)|vJm on the upper bound of estimation error, e can be optimized
by the observer gain matrices Lq(ηq). However, this optimization is not considered
in this paper.

Under the switching sequence shown in Fig. 1, the simulation results of the
interval observer are depicted in Fig. 2. Figure 3 represents an enlarged view of
the results in Fig. 2. It is worth noting that the state x is between the lower and
upper bounds x and x. In order to highlight the performance of the proposed
interval observer, one can remark that the errors e and e stay bounded and positive.
The simulation results of the evolutions of the estimation errors are presented in
Fig. 4 and Fig. 5.
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Figure 1: Evolution of the switching signal
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Figure 2: Evolution of the state x and the estimated upper and lower bounds x
and x.
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Figure 3: Evolution of the state x and the estimated upper and lower bounds x
and x (ZOOM).
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Figure 4: Evolution of the estimation errors
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Figure 5: Evolution of the estimation errors (ZOOM)

6 Conclusions and outlook on future work

In this paper, an interval observer approach is developed for continuous-time LPV
switched systems with polytopic time-varying parameters which are supposed to
be measured. Under the assumption that the measurement noise and the state
disturbance are unknown but bounded, cooperativity and input to state stability
of the upper and lower bounds of the errors are provided. The key advantage
of this contribution is the reduction of the conservatism thanks to the polytopic
form of the time-varying parameters. Simulation results are given to illustrate
the efficiency of the approach. For future works, extensions of these results with
unmeasured scheduling vector and the relaxation of Assumption 4 by finding a
change of coordinates can be expected.
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[3] Efimov, Denis, Perruquetti, Wilfrid, Räıssi, Tarek, and Zolghadri, Ali. Interval
observers for time-varying discrete-time systems. IEEE Transactions on Au-
tomatic Control, 58(12):3218–3224, 2013. DOI: 10.1109/tac.2013.2263936.

[4] Efimov, Denis, Perruquetti, Wilfrid, Räıssi, Tarek, and Zolghadri, Ali. On
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estimation for continuous-time switched linear systems. Automatica, 90:230–
238, 2018. DOI: 10.1016/j.automatica.2017.12.035.
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