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Nacim Meslema and John J. Martineza

Abstract

This work presents set-valued algorithms to compute tight interval pre-
dictions of the state trajectories for a class of uncertain dynamical systems,
where the dynamics is described as a sum of a linear and a nonlinear term.
Based on interval analysis and the analytic expression of the state response
of discrete-time linear systems, non-conservative numerical schemes are pro-
posed. Moreover, under some stability conditions, the convergence of the
width of the predicted state enclosures is proved. The performance of the
proposed set-valued algorithms is illustrated through two numerical exam-
ples, and the results are compared to that obtained with another method
selected from the literature.

Keywords: reachability analysis, interval analysis, uncertain systems, set-
membership techniques

1 Introduction

One way to check a priori the safety behavior of an uncertain dynamical system
is to predict its reachable set [2, 5, 7, 11, 13, 14, 21, 22, 27, 28, 29], namely the
set which contains all possible state trajectories of the system generated from a
bounded set of initial conditions. More precisely, based on this reachable set it is
possible to prove numerically the satisfaction or the violation of desired properties
of a dynamical system. Figure 1 illustrates this safety verification method. In
this figure, the region of the state space, where the behavior of the system is safe,
denoted by S, is delimited by the bold continuous lines. This safe set is described
by the set of constraints to be satisfied. Thereby, to guarantee the safe behavior
of the system despite the presence of uncertainties in its model, it is sufficient to
show that its reachable set, denoted by R and delimited by the dashed curves, stays
inside the safe region S. In addition, by means of reachability analysis, one can
verify if a given nominal controller can steer an uncertain system from an initial
state set X0, depicted by the big circle in Figure 1, to a final desired target set
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T , shown by the small circle, without violating the safety and resource limitation
constraints [15].

Figure 1: An illustration of viability problems solved by means of reachability
analysis. X0 stands for the initial set, S is the safety set, R is the reachable set,
and T stands for the desired target set.

Although the idea behind this safety verification approach is simple, computing
the reachable set of an uncertain system is a hard task. Several set-membership
methods, based on different geometrical shapes [2, 3, 8, 11, 14, 23, 28], have been
proposed in the literature to compute tight outer approximations of the reachable
set. Unfortunately, in conjunction with dynamical systems, these set-membership
methods have been too conservative. This conservatism is unavoidable for two
main reasons. At every iteration, the exact reached set of an uncertain system
is overestimated by framing it into a super-set both feasible to construct and to
represent on a computer. In the literature, this phenomenon is called the wrapping
effect, which is well illustrated in the case of interval analysis [1, 4, 19]. The second
source of conservatism is the dependency problem, which appears when an uncertain
variable occurs several times in interval arithmetic.

In this work, effective algorithms for computing tight outer approximations of
the reachable set of a class of discrete-time dynamical systems, where the dynamics
is defined as a sum of a linear and a nonlinear term, are introduced. To cope with
the wrapping effect, these algorithms compute at every time instant an enclosure of
the reached set directly from the initial set. This means that, due to the proposed
numerical schemes, the over-estimations linked to the iterative set computations
are avoided. In addition, under some stability assumptions on the system’s dynam-
ics, these algorithms provide state enclosures with a converging width. It is worth
pointing out that unlike the method introduced in [10], no pseudo-linear transfor-
mation is needed to apply the proposed approach. To avoid the wrapping effect,
an interval version of the analytic expression of the state response of discrete-time
linear systems is used, and interval assessments are performed as last computa-
tion step. This way to tackle the reachability problem differentiates the proposed
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method with respect to the other set computation methods that are based on the
dynamic equations of the systems.

The remainder of this paper is organized as follows. In Section 2, the consid-
ered problem is formulated and a brief introduction to interval analysis is presented.
The main contributions of this work are stated in Section 3. The interval predic-
tor algorithms are introduced, and the convergence of the width of the computed
state enclosures is analyzed. In Section 4, simulation results obtained on numerical
examples are presented. On the one hand, the performance of the proposed algo-
rithms is illustrated, and on the other hand, this performance is compared to that
obtained with the method proposed in [16].

2 Problem formulation

Consider the class of uncertain discrete-time dynamical systems described by:

xk+1 = Axk + f(xk,wk) + Buk, (1)

where xk ∈ X ⊂ Rn is a state vector and uk ∈ U ⊂ Rm is an input vector. The
nonlinear term f(., .) stands for the poorly-known part of the system (1), which is
assumed to be bounded:

∀xk ∈ X and ∀wk ∈ W ⊂ Rp, f(xk,wk) ∈ F , (2)

where F is a bounded set. The vector wk can contain uncertain parameters of
the system or unknown exogenous signals (noises, perturbations), which act on the
system’s dynamics. Likewise, the initial condition of this system x0 is assumed to
be unknown but belonging to a bounded set X0.

By definition, the reachable set of the uncertain discrete-time system (1), de-
noted by R

(
{t0, . . . , tk}, t0,X0

)
, is the set of all its possible state trajectories gen-

erated from the initial bounded set X0 ⊂ D and solutions to the set of difference
equations (1). More formally, R

(
{t0, . . . , tk}, t0,X0

)
stands for a sequence of the

reachable sets at the time instants tk denoted by R
(
tk, t0,X0

)
. Characterizing the

exact reachable set for an uncertain system is a hard task in practice. For this rea-
son, almost all approaches proposed in the literature [3, 9, 10, 11, 12, 14] attempt
to compute a tight outer approximation of this reachable set. By construction, an
outer approximation of the reachable set of (1), denoted by Y

(
{t0, . . . , tk}, t0,Y0

)
,

is a set that satisfies the following inclusion:

∀k ≥ 0, R
(
{t0, . . . , tk}, t0,X0

)
⊆ Y

(
{t0, . . . , tk}, t0,Y0

)
. (3)

In the case of linear dynamical systems, many geometrical forms (e.g. ellipsoids,
zonotopes, parallelotopes, boxes) have been used to compute an enclosure of the
reachable set. The choice of these forms relies on their feasibility to build and to
represent on computers. The common principle of the reachability computation
methods consists in propagating in time, according to the uncertain dynamics of
the system, these super-sets. These set-membership methods, are step-by-step
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algorithms, where at each step an optimization problem is solved to obtain a smaller
super-set that contains the exact reachable set of the system. More precisely, the
provided outer approximation is a union of the guaranteed enclosures Yk of the
solution to (1) at the time instants tk, k = 0, 1, 2 . . . .

Y
(
{t0, . . . , tk}, t0,Y0

)
=

k⋃
0

Yk. (4)

However, this problem can be also solved by means of the theory of monotone
dynamical systems [29]. Based on constant or time-varying similarity transforma-
tions [6, 16], the dynamics of the system can be represented in a monotone form
in the new basis of the state of coordinates. Subsequently, upper and lower sys-
tems are designed to generate upper and lower state trajectories that frame all the
possible solutions to (1) in the new state basis.

In this work, we propose a new approach, where the state enclosures Yk at every
time instant tk are computed directly from Y0. Notice that, this way to proceed
offers a great advantage to avoid wrapping effect. In addition, it is worth pointing
out that the introduced algorithms are based on interval analysis but it is possible
to implement them with any other representations like ellipsoids and zonotopes.

2.1 Interval analysis

At the beginning, interval analysis [1, 19] was introduced to handle uncertainties
in numerical computation carried out by computers. Thereafter, it has gained
a success in many areas of engineering science [8, 10, 17, 20, 24, 25, 26]. By
definition, an interval [x] = [x, x] is a closed subset of R, where the real numbers
x and x stand for its lower and upper endpoint, respectively. By construction,
interval arithmetic is an extension of real arithmetic. For each basic real arithmetic
operator ◦ ∈ {+,−,×,÷}, its interval counterpart is defined as follows:

[x] ◦ [y] , {a ◦ b | a ∈ [x], b ∈ [y]}, (5)

where [x] and [y] are interval operands. Note that, to avoid the undefined division,
when the interval [y] contains 0, specific formulas were introduced in [1, 18].

Likewise, an interval vector or box denoted by [x] is a subset of Rn defined
as the Cartesian product of n closed intervals. All arithmetic operations on real
vectors and matrices are extended to the interval case in the same spirit of the
definition (5). For instance, the product between an interval matrix [M] ⊂ Rn×m
and an interval vector [x] ⊂ Rm returns an interval vector [y] ⊂ Rm defined as
follows:

[y] , {Mx | x ∈ [x], M ∈ [M]}. (6)

The width of an interval is the distance between its endpoints w([x]) = x − x
and the width of an interval vector of dimension n is defined by:

w([x]) , max
1≤i≤n

w([xi]). (7)
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The absolute value of an interval [x] is the maximum value between the absolute
values of its endpoints |[x]| = max{|x|, |x|}. For an interval vector [x] ∈ Rn the
absolute value is defined as follows:

|[x]| ,
(
|[x1]|, |[x2]|, . . . , |[xn]|

)T
. (8)

Moreover, the infinity norm of an interval vector, here denoted by
∥∥.∥∥, is introduced

as follows: ∥∥[x]
∥∥ ,

∥∥|[x]|
∥∥
∞ = max

1≤i≤n
|[xi]|. (9)

Note that, an interval matrix [M] ⊂ Rn×m has n rows and m columns with interval
entries [mi,j ] ∈ R, i = 1, . . . n; j = 1, . . .m. Hence, the width and the norm of an
interval matrix can be introduced respectively as follows:

w([M]) , max
i,j
{w([mi,j ])}, (10)

∥∥[M]
∥∥ ,

∥∥|[M]|
∥∥
∞ , max

i
{
∑
j

|[mi,j ]|}. (11)

In addition, the width of an interval vector [y] = [M][x] can be bounded as:

w([y]) ≤
∥∥[M]

∥∥w([x]). (12)

3 Main results

The results of this work are widely motivated by the divergence issue observed
when interval computation is applied to the iterative rotation operator [1, 4]. To
illustrate this problem, consider the following autonomous system,

xk+1 = Axk, (13)

where the matrix A is a rotation operator defined as follows:

A =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. (14)

Thus, according to the discrete-time dynamics (13), the initial box of the state vari-
ables e.g., [x0] = ([−0.5, 0.5], [3.5, 4])T rotates at every iteration with an angle,
say θ = π

4 , and preserves its volume constant over all the simulation period. Un-
fortunately, the naive application of interval analysis to characterize the reachable
set of this system leads to too conservative results as shown in Figure 2. The exact
reachable set of the system (13) is shown by the thin blue parallelotopes, and its
outer approximation computed by the direct interval method is represented by the
bold red boxes. In fact, the wrapping procedure introduces an overestimation at
every iteration.
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Figure 2: The exact reachable set of the system (13) and its outer approximations.

One way to circumvent this issue is to apply interval analysis to the analytic
expression of the state response of this system. That is,

xk = Akx0. (15)

As shown in Figure 2, the application of this new approach allows to obtain the
tightest outer approximation of the exact reachable set of (13). The tightest outer
approximation, shown by the dashed green boxes, is constituted by the smallest
boxes which contain the exact reachable set. Moreover, as illustrated in this figure,
the width of the smallest boxes is bounded.

To generalize the use of this new approach to the class of dynamical systems
described by (1), we propose the following interval predictor.

Proposition 1. Let b0 = Bu0 and [f0] = [f , f ] ⊇ F . Then for all k ≥ 1, the
interval-based predictor described by:

[xk] = Ak[x0] + [fk−1] + bk−1
[fk] = Ak[f0] + [fk−1]
bk = Abk−1 + Buk,

(16)

provides a tight outer approximation of the reachable set of the uncertain discrete-
time system (1):

k⋃
0

[xk] ⊇ R
(
{t0, . . . , tk}, t0,X0

)
, (17)
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where [x0] ⊇ X0.
In addition, if the matrix A is Schur stable, that is its spectral radius ρ(A) < 1, the
width of this outer approximation is bounded.

Proof. The proof of this proposition is introduced in two stages. First, we prove
that the proposed interval predictor encloses in a guaranteed way all possible so-
lutions to (1). Then, under the stability assumption of the matrix A, we show the
boundedness of the width of the predicted state enclosures.

1) Framing proof: Here, we will proceed by induction. When k = 1,

x1 = Ax0 + Bu0 + f(x0,w0), (18)

where x0 ∈ [x0] and f(x0,w0) ∈ [f , f ]. Then,

x1 ∈ A[x0] + Bu0 + [f , f ]
∈ A[x0] + b0 + [f0]
∈ [x1].

(19)

Now, we assume that (16) holds for some natural number k, and we have to prove
that this statement holds for k + 1. For a given instant k, the analytic solution to
(1) is described by:

xk = Akx0 +

k−1∑
i=0

Ak−i−1Bui +

k−1∑
i=0

Ak−i−1f(xi,wi). (20)

Since, (16) is assumed to be true for k, one can state that:

k−1∑
i=0

Ak−i−1Bui = bk−1, (21)

and
k−1∑
i=0

Ak−i−1f(xi,wi) ∈ [fk−1]. (22)

Now, for k + 1 one has:

xk+1 = Ak+1x0 +

k∑
i=0

Ak−iBui +

k∑
i=0

Ak−if(xi,wi). (23)

Notice that, (23) can be rewritten as:

xk+1 = Ak+1x0+Buk+

k−1∑
i=0

Ak−i−1Bui+Akf(x0,w0)+

k−1∑
i=0

Ak−i−1f(xi,wi). (24)
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Then, from (21), (22), and (24) one can state that:

xk+1 ∈ Ak+1[x0] + Buk + bk−1 + Ak[f0] + [fk−1]

∈ Ak+1[x0] + [fk] + bk.

(25)

This completes the first part of the proof.

2) Boundedness proof: By construction, the width of the state enclosure at
any time instant can be bounded as follows:

w
(
[xk]

)
≤

∥∥Ak
∥∥w([x0]

)
+ w

(
[fk−1]

)
,

w
(
[fk]
)
≤

∥∥Ak
∥∥w([f0]

)
+ w

(
[fk−1]

)
.

(26)

Since the matrix A is assumed to be Schur stable, one has:

lim
k→+∞

Ak = 0. (27)

Then, based on this matrix property, one can claim that:

limk→+∞ w
(
[xk]

)
≤ limk→+∞

∥∥Ak
∥∥w([x0]

)
+ limk→+∞ w

(
[fk−1]

)
≤ limk→+∞ w

(
[fk−1]

)
= limk→+∞ w

(
[fk]
)

= a fixed point.
(28)

This completes the proof.

Remark 1. Since the matrices A and B and the input vector uk are assumed to
be perfectly known, the last recurrence equation in (16) is not implemented with
interval arithmetic.

3.1 Periodically reinitialized interval predictor

In order to improve the precision of the interval-based predictor (16), we propose in
this subsection a periodic version of it. Rather than using the global box [f0] ⊇ F
to compute the state enclosures at every iteration, we propose in the new algorithm
to use the following local boxes:

∀xk ∈ [xk] and ∀wk ∈ [wk] f(xk,wk) ∈ [fk] = [f ]
(
[xk], [wk]

)
. (29)

Remark 2. Unlike the definition of the boxes [fk] used in (16), here the local boxes
[fk] stand for the inclusion function of f(., .) assessed over the current boxes [xk]
and [wk].

Hence, it is clear that, from a given state enclosure [xs] determined at the time
instant s one can predict in a guaranteed way the future state enclosure of the
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system by means of the following interval equation:

[xk] = Ak−s[xs] + M


[fs]
[fs+1]
...
[fk−1]

 + B̃


us
us+1

...
uk−1

 , (30)

where M =
(
Ak−1−s,Ak−2−s, . . . , In

)
, B̃ =

(
Ak−1−sB,Ak−2−sB, . . . ,B

)
and k >

s. Here, In stands for the identity matrix of dimension n. Even though this
formula is less conservative than the one used in (16), its main drawback is its

resource demanding. In fact, the size of the matrices M and B̃ are growing in time.
At each iteration the new matrix M (resp. B̃) is constructed by an horizontal

concatenation of the matrices AM and In (resp. AB̃ and B). Thus, the sizes of
these matrices in function of k are: n× (k ∗ (n+ 1)) for M and n× (k ∗ (m+ 1) for
B̃. Consequently, for a large value of k, one obtains matrices of huge dimension,
which requires a lot of both computation time and memory space. To overcome
this drawback, we propose in the following algorithm to reinitialize periodically this
formula. The idea is to reset (30), with the current state enclosure, whenever the

sizes of the matrices M and B̃ reach user-defined values.

Form the initial box [x0], Algorithm 3.1 computes an outer approximation of
the reachable set of (1) over the whole simulation time N , where the formula (30)
is reinitialized periodically with user-defined period β.

In line 2, the endpoints of the first period are set. Then, in the beginning of
the while loop the matrices Ã, B̃, M, the boxes [F], [xs] and the real vector U
are initialized for each new period β. Based on the interval formula (30), the for
loop computes the state enclosures [xj ] at every time instant tj . To prepare the

next iteration, the size varying matrices M and B̃ are recomputed in the lines 9
and 10. The new matrices are column concatenations of the matrices {AM, In}
and {AB̃, B}, respectively. In the same way, the new vector U and box [F] are
constructed, in lines 11 and 12, by row concatenations of the vectors {U, uj} and
the boxes {[F], [fj ]}, respectively.

Remark 3. To be efficient against pessimism propagation the period β has to be
chosen such that the following equality is satisfied,

‖Aβ‖ � 1. (31)

4 Illustrative examples

To show the performance of the proposed interval prediction algorithms, two ex-
amples borrowed from the literature [6, 16] are considered in this section.
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Algorithm 1 Periodic Interval Predictor

1. Require: [x0], N , β;

2. Set: Ti := 1; j := Ti; Tf := β;

3. while (Tf < N);

4. Ã := In; B̃ := B; M := In;

5. [F] := [fj−1]; [xs] := [xj−1]; U := uj−1;

6. for j = Ti to j = Tf

7. Ã := ÃA;

8. [xj ] := Ã[xs] + M[F] + B̃U;

9. M :=
(
AM, In

)
;

10. B̃ :=
(
AB̃, B

)
;

11. U :=
(
U; uj

)
;

12. [F] :=
(
[F]; [fj ]

)
;

13. end

14. Ti := Tf + 1; Tf := Tf + β;

15. end

16. Return: [x0], [x1],. . . , [xN ];

4.1 Example 1

Consider the following nonlinear discrete-time system:

xk+1 =

(
0.3 −0.7
0.6 −0.5

)
xk + δ

(
sin(0.5kx2k)
sin(0.3k)

)
+

(
sin(0.1k)
cos(0.2k)

)
, (32)

where the poorly-known nonlinear term in (32) is assumed to be bounded,

∀δ ∈ [−0.5, 0.5],∀x2k ∈ [x2k], δ

(
sin(0.5kx2k)
sin(0.3k)

)
∈
(

[−0.5, 0.5]
[−0.5, 0.5]

)
. (33)

As show in Figure 3, an outer approximation of the reached set of this system
generated from the initial state box x0 = [5, −5] × [5, −5] is computed by the
interval predictor (16). This outer approximation is depicted in dashed curves and
the elapsed computation time (with a processor Intel(R) Core(TM) i7-8650U CPU
@ 1.90 GHz 2.11 GHz) is in the order of millisecond. The thin curves, confined
between the dashed curves, represent some possible state trajectories of the system
(32) generated randomly from the initial state box [x0].



Interval Predictors for a Class of Uncertain Discrete-Time Systems 503

0 20 40 60 80 100

k

-6

-4

-2

0

2

4

6

x 1

0 20 40 60 80 100

k

-5

0

5

10

x 2

Figure 3: Predicted outer approximations of state trajectories. Dashed lines show
the result of the Interval Predictor. Continuous lines present the results of the
Periodic Interval Predictor.

As expected, the application of the periodically reinitialized interval predictor
allowed to get a tighter outer approximation than that obtained in the first expe-
rience. This new outer approximation is depicted with the bold continuous lines in
Figure 3. Notice, the observed oscillations in the outer approximation provided by
the second algorithm are connected to the sinusoidal boxes used to locally overes-
timate the nonlinear uncertain term:

∀k ≥ 0, [f(xk,wk)] =

(
[δ][sin(0.5k[x2k])
[δ] sin(0.3k)

)
. (34)

The paid price to get this improvement is the computation time, which is in
this experience slightly larger than that of the first experience. Note that, this
algorithm is applied with a re-initialization period β = 50 and the small inflation
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observed at the time instant k = 51 is due to the re-initialization effect.

4.2 Example 2

In this second example, we compare the performance of our approach to that in-
troduced in [16]. The considered uncertain system in [16] is defined as follows:

xk+1 =
1

2

 −1 0 0
0 −1 1
1 −1 −1

xk + f(wk), (35)

where the poorly-known term f(.) is assumed to be bounded,

∀k ≥ 0,

 0
2 sin(3k)− 1

0

 ≤ f(wk) ≤

 0
2
0

 . (36)

The outer approximation of the reachable set of this system, generated from
the initial box [x0] = [5, −5] × [7, −2] × [6, −3] and computed by means of the
method proposed in [16], is plotted with the bold continuous lines on the Figure
4. The result of the periodically reset interval predictor is shown by the dashed
curves. As observed in this figure, the proposed algorithm yields tighter enclosure
of the actual state trajectory of the system depicted by the thin curves. This state
trajectory is obtained with,

f(wk) =

 0
2 sin(3k)

0

 , (37)

and started from the initial state x0 = (1, 1, 2)t. Note that, the used reset period
in this experience is β = 10 and the elapsed computation time is about 0.012 s. In
addition, we highlight that this computation time is lower than that required by
the method introduced in [16], which is about 0.027 s.

5 Conclusion

Two algorithms for computing outer approximations of the reachable set of uncer-
tain discrete-time dynamical systems have been introduced in this paper. The main
idea of these algorithms is to combine the mathematical expression of the state re-
sponse of linear discrete-time systems with interval analysis to get tight enclosures
of the exact reached set. Indeed, the proposed approach allows to effectively avoid
the wrapping effect. Simulation results are shown to illustrate the performance of
these algorithms. In addition, it is worth pointing out that these algorithms can
be also implemented with other super-sets like ellipsoids and zonotopes.

In forthcoming works, we attempt to combine these reachability algorithms
with the set-membership consistency techniques to deal with the safety verification
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Figure 4: The predicted outer approximations. Bold continuous curves show the
results of the method introduced in [16]. Dashed curves illustrate the results of the
periodically reset interval predictor.

problem for uncertain dynamical systems. The proposed approach is useful for
designing verification algorithms able to provide reliable decisions on the healthy
behavior of dynamical systems, despite of the presence of uncertainties in their
environments.
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