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Verified Interval Enclosure Techniques for

Robust Gain Scheduling Controllers
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Abstract

In real-life applications, dynamic systems are often subject to uncertainty
due to model simplifications, measurement inaccuracy or approximation er-
rors which can be mapped to specific parameters. Uncertainty in dynamic
systems can come either in stochastic forms or as interval representations.
The latter is applied if the uncertainty is bounded as it will be done in this
paper. The main idea is to find a joint approach for an interval-based gain
scheduling controller while simultaneously reducing overestimation by enclos-
ing state intervals with the least amount of conservativity. The robust and/
or optimal control design is realized using linear matrix inequalities (LMIs) to
find an efficient solution and aims at a guaranteed stabilization of the system
dynamics over a predefined time horizon. A temporal reduction of the widths
of intervals representing worst-case bounds of the system states at a specific
point of time should occur due to asymptotic stability proven by the employed
LMI-based design. However, for commonly used approaches in the compu-
tation of interval enclosures, those interval widths seemingly blow up due to
the wrapping effect in many cases. To avoid this, we provide two interval
enclosure techniques — an exploitation of cooperativity and an exponential
approach — and discuss their applicability taking into account two real-life
applications, a high-bay rack feeder and an inverse pendulum.

Keywords: gain scheduling control design, cooperativity, interval enclosure
techniques, LMIs

1 Introduction

The use of LMIs is common when dealing with robust control issues. Although for-
merly developed for purely linear systems, their use can be extended to nonlinear
applications if they can be expressed in a quasi-linear state-space representation.
Here, the state dependencies can be considered as uncertainties in the system’s poly-
topic representation and/or input matrices which makes them further prone to be
handled with LMIs. This quasi-linear state-space representation overapproximates
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the influence of the state dependencies. When dealing with intervals, overestima-
tion is a big subject to current investigations. In [8], feedback gains were computed
for an initial state interval with a subsequent verification step, in which it was
examined whether the control is valid over a finitely long time horizon in terms of
a verified stabilization of the system dynamics. Here, if the verification failed, the
gain was adjusted after computing a bounding box of states that are reachable over
the complete prediction window. However, the results showed that the verification
step was difficult to perform with existing state-of-the-art approaches [14, 17] be-
cause of a high level of overestimation. This led to an increased interval width for
the computed states in a short time. It became clear that this was mainly caused
by the prediction step which was done by a Picard iteration with a subsequent
tightening step evaluating a temporal Taylor series expansion of the initial value
problem (IVP). To avoid this step, cooperativity has been considered, e.g. in [10]
on the basis of findings in [5, 15,16]. For an autonomous dynamic system

ẋ(t) = f (x(t)) , x ∈ Rn , (1)

cooperativity is given as a sufficient condition when all off-diagonal elements Ji,j ,
i, j ∈ {1, . . . , n}, i 6= j, of the corresponding Jacobian

J =
∂f (x)

∂x
(2)

are strictly non-negative according to

Ji,j ≥ 0 , i, j ∈ {1, . . . , n} , i 6= j . (3)

For such cases, it is guaranteed that state trajectories x(t) starting in the positive
orthant

Rn+ = {x ∈ Rn | xi ≥ 0 , ∀i ∈ {1, . . . , n}} (4)

stay in this positive orthant for all t ≥ 0 because

ẋi(t) = fi (x1, . . . , xi−1, 0, xi+1, . . . xn) ≥ 0 (5)

holds for all components i ∈ {1, . . . , n} of the state vector as soon as the state xi
reaches the value xi = 0. This property is often referred to as positivity of the
system model (1) [7]. The computation of interval enclosures simplifies with this,
because the worst-case bounds of uncertain systems can be computed following
the element-wise inequalities (6) as two separate linear known systems and while
assuring that all possible states lie within their solutions

fv (v) = v̇(t) ≤ ẋ(t) ≤ ẇ(t) = fw (w) with v ≤ x and w ≥ x . (6)

There are system models that are naturally cooperative like in the fields of biolog-
ical, chemical, and medical applications. However, other systems do not show this
property, when derived by first-principle techniques. This holds for example for
electrical, magnetic, and mechanical systems. Those systems can, as [10] shows,
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be transformed into a cooperative form. However, overestimation still occurs due
to the associated similarity transformation, which has to be done in two directions
(transforming the system into a cooperative coordinate system and then transfer-
ring the computed state enclosures back into the original form) leading to even
larger intervals for some applications. Hence, if such direct state-space transfor-
mations are not effective enough, we make use of an exponential interval enclosure
approach, developed in [19].

Section 2 presents two different approaches to combine the findings of a gain
scheduling control and a verified state computation. A further look into the com-
putation of the required interval enclosure is given in Section 3, describing both
methods and discussing their general applicability. The next two sections will give
application scenarios, with Section 4 regarding a parameter-dependent uncertainty
in a high-bay rack feeder, while Section 5 shows the behavior of an inverse pendu-
lum with uncertain initial conditions resulting in uncertainty in the states due to a
quasi-linear state-space representation and the physically motivated dependencies
between all states. Finally, Section 6 gives conclusions and an outlook on future
work.

2 Robust Gain Scheduling Control

The basic idea for all approaches considered in this paper is to calculate controller
gains for all reachable states to robustly control an uncertain system. Here, we
want to guarantee asymptotic stability of the closed-loop system for all uncertain
initial states described by the n-dimensional interval box

[x0] = [x](0) =

 [x1(0) ; x1(0)]
...

[xn(0) ; xn(0)]

 , (7)

where inf ([xi]) = xi represents the infimum and sup ([xi]) = xi the supremum of
each vector component [xi] = [xi; xi], i ∈ {1, . . . , n}, xi ≤ xi ≤ xi. Two different
possibilities of uncertainties of the system are considered. One is a parameter
variability in a linear continuous-time system

ẋ = A(p) · x + B(p) · u
y = C · x + D · u

(8)

and the other is an uncertainty due to state-dependency of a nonlinear continuous-
time system in the form

ẋ = f(x,u) (9)

with the state vector x ∈ Rn, the parameter vector p ∈ Rnp , and the control
vector u ∈ Rm. If Eq. (9) can be reformulated exactly in terms of the quasi-linear
state-space representation

ẋ = A(x) · x + B(x) · u
y = C(x) · x + D(x) · u

(10)
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and assuming the desired operating state at x = xs = 0 for the steady-state input
signal u = us = 0, a feedback controller is parameterized according to

u = −K · x or u = −K (x) · x. (11)

Suitable control laws for the second option in Eq. (11) can be determined by means
of extended linearization techniques [3]. Hence, both types of control laws can be
handled equally when considering an uncertainty due to parameter variability or
an uncertainty due to the state dependency if both controller gains are computed
by means of an LMI approach. Note that this section is written to underline and
discuss the general applicability of this approach. Hence, there will be notes and
remarks which are not considered in the application scenarios but can be incor-
porated quickly and easily because of the chosen structure of the design method.
Firstly, this section represents a state-of-the-art design which is then extended by
two novel approaches to reduce conservativity if either fixed or piece-wise constant
gains are determined for the control laws in (11).

2.1 Robust LMI-Based Control Synthesis

The advantage of this well known method lies in a direct robust design approach
because the system model in Eq. (10) is overapproximated by a polytopic uncer-
tainty representation, see [22], with parameter-dependent system and input matri-
ces A (p) and B (p), which complies with Eq. (8) in a straightforward way. This
model can be represented by the following convex combination of suitably chosen
vertex matrices

D =
{

[A(ξ),B(ξ)]
∣∣∣[A(ξ),B(ξ)] =

nν∑
ν=1

ξv · [Aν ,Bν ] ;

nν∑
ν=1

ξν = 1; ξν ≥ 0
}

(12)

with the help of the vector ξ = [ξ1 . . . ξν ]
T

. Here, the vertex matrices are denoted
by Aν = Aν(p) and Bν = Bν(p), where each of them depends in an affine way on
the vector of independent parameters p ∈ Rnp which are contained in the interval
box

[p] =
[
p ; p

]
(13)

with the component-wise defined bounds p
i
≤ pi ≤ pi, i ∈ {1, . . . , np}. Under this

assumption of independent parameters, nν = 2np vertex systems need to be taken
into consideration for the robust control design, which result from an evaluation of
A (p) and B (p) for each of the vertices

P =




p

1
p

2
...

p
np

 ,

p1

p
2
...

p
np

 , . . . ,

p1

p2
...

pnp


 =

{
p〈1〉, . . . ,p〈nν〉

}
. (14)

Now, LMIs give us many options to compute suitable controller gains based on our
needs and desired specifications. The chosen implementation is done to maintain
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the highest possible generalization, so that it can easily be adjusted to different
scenarios. For that, we make use of feasible regions of eigenvalues of the closed-
loop control system which are defined in terms of a so-called Γ-region1. These
regions are introduced as

FΓ(s) = D0 + sD1 + s̄DT
1 , (15)

with the Laplace variable s ∈ C and its conjugate complex s̄. Here, negative defi-
niteness FΓ ≺ 0 needs to be satisfied for all eigenvalues of the closed-loop system.
To reformulate the inequality FΓ ≺ 0 into an LMI, we consider the following: If
all eigenvalues of a real-valued system matrix A lie within the interior of the re-
gion (15), a positive definite matrix P = PT � 0 exists that fulfills the matrix
inequality [22]

D0 ⊗P + D1 ⊗ (AP) + DT
1 ⊗ (AP)T ≺ 0 . (16)

Here, the matrix P defines a Lyapunov function V (x) = 1
2xTPx > 0 for x 6= xs = 0

with which stability of the dynamic system ẋ = Ax can be proven. Moreover, the
real-valued parameter matrices D0 = DT

0 and D1 provide flexible possibilities as
requested to define Γ-stability regions such as ellipses, hyperbolas, parabolas, cones,
and strips in the complex plane [1].

An exemplary choice for an absolute stability margin γ > 0 would lead to setting
D0 = 2γ and D1 = 1 resulting in a design goal for the region FΓ = 2γ + s+ s̄ ≺ 0
equivalent to a limitation of the eigenvalues’ real parts by the inequality contraint
<{s} < −γ < 0. Note that pure Hurwitz stability is trivially included in this
formulation by choosing γ = 0. For the control design, the inequality (16) is
reformulated according to

D0 ⊗Q + D1 ⊗ (QAT
ν −YTBT

ν ) + DT
1 ⊗ (AνQ−BνY) ≺ 0 (17)

after a linearizing change of variables Q = P−1 and K = YP. A joint solution
Q � 0, Y of the LMI (17) for each of the vertices ν ∈ {1, . . . , 2np} is required
to achieve robust stability for the uncertainty representation (12)–(14) with eigen-
values that are compatible with the domain FΓ ≺ 0 defined in (15). This can
be done numerically by using commonly known LMI solvers like SeDuMi [25] for
YALMIP [12].

For the first scenario defined in Eq. (8), where the uncertainty lies within the
parameters, this is basically the full approach. Here, there is only one controller
gain for the whole range of parameters, see the first part of Eq. (11), and the only
thing left for a simulation-based performance evaluation is to calculate worst-case
bounds for all reachable states which will be addressed in Sec. 3.

2.2 Reducing Conservativity by Means of Gain Scheduling

The novel approach is based on the idea that for systems with state dependencies,
the initially chosen domain of all reachable states [x] (t) ⊆ [X ] for the complete

1Obviously, also optimality criteria such as robust H2 and H∞ tasks can be taken into account
by the same LMI-based design framework also considering output and state limitations, see [4,6].
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operating time horizon t ∈ [t0 ; tf ], which is used for the LMI-based control param-
eterization, may (at least after a certain time span) be too conservative and, thus,
turning the control parameterization unnecessarily restrictive. This conservativity
can be reduced by gain scheduling controllers based on tight enclosures of the sets
of reachable states Eq. (10). The approach is an extension on the idea of [8].

Here, the goal of the design procedure is to ensure asymptotic stability of the
closed-loop system for all reachable states x(t) ∈ [x] (t) by a sequence of control
matrices Kk, k ∈ {0, 1, 2, . . .}, where T = tk+1 − tk denotes a fixed sampling time.
It was found, that after a certain time, the gains remain constant in the vicinity
of the equilibrium. This is used in the presented paper for two different novel
designs. Both approaches are based on the idea that we can predict guaranteed
state enclosures for a robustly controlled state initialized by an interval. Hence,
they basically aim at a reduction of the width of the reachable domains due to the
control, reducing conservativity in the control strategy itself.

2.2.1 Approach 1: Constant gain with robustness over the whole time
horizon

The first approach makes use of the information gained over the complete time
horizon. For this, it firstly computes a controller gain for the interval domain of
the initial states set by the user (usually the complete controllable domain), which

includes all assumed reachable states
[
X (0)

]
=
[
X̌
]

for t ∈ [t0 ; tf ]. This enclosure[
X̌
]

is inflated to a rough outer enclosure of the desired operating domain, which
is then subsequently tightened in an iterative procedure with i ∈ N to the actually
reachable interval domains. For details about this procedure see also Sec. 3. Note

that if
[
X (i+1)

]
⊆
[
X (i)

]
⊆
[
X̌
]

holds, the hull over all intervals of the state

regarding the whole time horizon is set to the new less conservative interval bounds
for the next iteration of the controller gains K(i+1), see Fig. 1.

This is repeated as long as the interval diameters decrease, finalizing when the

t

[
X (i+1)

][
X̌
] [

X (i)
] [x] (t)

x

Figure 1: Illustration of the basic control approach for a scalar state variable.
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optimal solution with the smallest amount of conservativity regarding the controller
gains is reached or if a final number of runs has been done as the yellow parts of
the structure in Fig. 2 show.

Set
[
X̌
]

as the initial state domain
[
X (0)

]
, i := 0

Compute a robust stabilizing controller gain Kini (according to the specifications in
Sec. 2.1) for the parameters [p] corresponding to the complete state interval which the system
matrix depends on

Calculate the interval enclosures of reachable states for the complete time horizon
t = [t0 ; tf ]

Set the outer hull over all interval enclosures [X (i)] =
⋃

t∈[t0 ; tf ]

[x] (t) as the new state domain

Analyze the sequence of interval enclosures for optimal switching points and get the
respective list of time steps tlist ∈ {tζ}, ζ ∈ {1, . . . , ζend} at which the gain matrix K changes
its value

End of new time vector has not been reached tf 6= tlist(ζend)

Set simulation time to t0 = tlist(ζ) and tf = tlist(ζ + 1)

Final number of runs has not been reached i ≤ N ∨
[
X (i+1)

]
⊆
[
X (i)

]
Compute a robust stabilizing controller gain K = K(i) (according to the previous
specifications) for the parameters [p] corresponding to the complete interval

[X ] := [X (i)] state interval which the system matrix depends on2

Calculate the interval enclosures for the complete time horizon t = [t0 ; tf ]

Set the hull over all interval enclosures [X (i)] =
⋃

t∈[t0 ; tf ]

[x] (t) as the new state domain

Increment the run counter i := i+ 1, output: gain K = K(i)

Figure 2: Interval-based gain scheduling procedure for Approach 1 (yellow) and
Approach 2 (all).

This approach, however, comes with a lengthy computation and can still be very
conservative, which leads to the need of optimization in terms of a temporal series
of controller gains, where the time intervals of piece-wise constant gains are not
constant as stated above but rather result from an intelligent step size control.

2Note that for the first run, this step is omitted and Kini is used as a controller gain.
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t

[
X (i+1)

][
X̌
] [

X (i)
] [x] (t)

x

tζ tζ+1 . . . tf

Figure 3: Illustration of the control approach for a scalar state variable.

2.2.2 Approach 2: Gain scheduling design over temporal subslices

Re-considering varying controller gains over the complete time horizon like in [8],
the first approach is redesigned to divide the time horizon into shorter time slices
while keeping everything else as it is. However, this would lead to an even longer
computation time than before. An analysis of the previous approach shows that the
time consuming computation comes from solving the LMIs for wide interval boxes.
Hence, we now want to use various controller gains in the transient phase — wide
interval boxes — while keeping constant ones for the later phase — tight interval
boxes —, see Fig. 3. To achieve this, we make use of an initial run of the first
approach to set all parameters and find a suitable division of the time horizon into
time steps displaying the changes best. Now, the computation of the new boxes
— the hull over all reachable states — is done for each of these steps analogously
to the first approach like shown in Fig. 2. The very first run for each part of the
time horizon, see also Fig. 9 and Eq. (56), — divided before — is done with the
initially chosen, conservative interval domain of the complete time horizon. This is
then gradually reduced with each iteration step re-scheduling the controller gains.
After finding the optimum for the current time slice, the procedure is done for the
next until the final time of the complete time horizon is reached.

3 Interval Enclosure Techniques from the
Perspective of Verified Gain Scheduling Control

As mentioned in Sec. 2, we need to find interval enclosures to the IVP with un-
certain initial conditions, see also [18], that allow for verifying the bounds that
are included in the polytope (12). As described above, the computation of those
interval enclosures is a difficult task to perform. In [8], it was done with a Picard
iteration with a subsequent tightening step evaluating a temporal Taylor series ex-
pansion of the IVP. This resulted in wide interval bounds which had to be reduced
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in a second step by means of interval subdivisions and eliminations by different
approaches such as computationally expensive stability considerations, see [8, 9].
However, the resulting intervals were still able to become less conservative. Hence,
the presented paper offers two different approaches.

3.1 Transformation of the Closed-Loop System Model into
a Cooperative Form

For a first idea, we want to make use of the property of cooperativity as explained
in Section 1. Since the system is already stabilized by methods given in Sec. 2, a
suitable system representation is

ẋ = AC(x) · x (18)

with the controlled system matrix AC(x) = A(x)−B(x) ·K(x). Here, we assume
that our system is not yet cooperative and, hence, needs to be transformed to cal-
culate the worst-case bounds [v(t) ; w(t)] 3 x(t) and, therefore, the state interval
enclosures. In case of cooperativity, this computation would be done by solving
IVPs independently for the two decoupled bracketing systems [24]

inf (AC ([X ])) · v(t) = v̇(t) ≤ ẋ(t) ≤ ẇ(t) = sup (AC ([X ])) ·w(t) (19)

with the domain of reachable states [x] (t) ⊆ [X ]. An approach to realize the trans-
formation was presented in [10]. Here, we differentiate between systems with purely
real eigenvalues, where one can use a time-invariant transformation and systems
including conjugate-complex eigenvalues, where a time-varying transformation is
necessary. For the given application scenario, we will restrict ourselves to the
latter, considering disjoint pairs of conjugate-complex eigenvalues of the interval
evaluation AC ([X ]) of the closed-loop system matrix. In this case, in general only
time-varying transformations into the form (19) are possible, see [13,16]. Here, we
can map the uncertainty into the locations of the eigenvalues themselves, which is
illustrated with an example for a system of order n = 2 in Fig. 4.

ℑ{s }

ℜ{s }

λ1

λ2=λ1
*

ω

ω

ω1

ω1

σ1σ σσ1

Figure 4: Possible locations of uncertain conjugate-complex eigenvalues.



476 Julia Kersten, Andreas Rauh, and Harald Aschemann

It becomes clear, that if the system matrices are evaluated for the whole range of
uncertain parameters, this leads to a variability of the real and imaginary parts of
conjugate-complex eigenvalues. Here, the position of the worst-case eigenvalues i ∈
{1, . . . , n} for all possible vertex matrices, used before for a polytopic description of
the uncertain system matrices, is marked by asterisk symbols. With those positions,
we can define axes-parallel boxes as a convex outer interval hull describing the
extremal real and imaginary parts [σi] = [σi; σi] and [ωi] = [ωi; ωi] of a conjugate-
complex eigenvalue pair. Note that when n is the (even) number of states, assume
without loss of generality ñ = n

2 guaranteed mutually disjoint conjugate-complex
eigenvalue pairs. As it was shown in [18], also real eigenvalues can be included in
this approach. There is a transformation matrix

T̃ =
[
T̃1, . . . , T̃ñ

]
, where T̃j ∈ [<{[vj ]},={[vj ]}] (20)

with j ∈ {1, . . . , ñ}, which consists of interval enclosures for the real and imaginary
parts of the eigenvectors of the uncertain system. Those eigenvectors can be com-
puted by means of the Intlab routine verifyeig [21]. With that transformation,
where x = T̃ · z̃, a block diagonal transformed system matrix is formally obtained:

Ã = blkdiag
(
Ã1, . . . , Ãñ

)
with Ãj ∈

[
[σj ] [ωj ]
−[ωj ] [σj ]

]
. (21)

The respective time-varying transformation is done by

z = T−1(t) · z̃ with T−1(t) = blkdiag
(
T−1

1 (t), . . . ,T−1
ñ (t)

)
= TT (t) . (22)

The orthogonal blocks

Tj =

[
cos([ωj ]t) sin([ωj ]t)
− sin([ωj ]t) cos([ωj ]t)

]
(23)

for j ∈ {1, . . . , ñ} are evaluated for the outer interval enclosures of the imaginary
parts of all eigenvalues which contain the exact angular frequencies according to
the relation ω∗j ∈ [ω∗j ] ⊆ [ωj ]. Since the structure of the transformed system matrix
(21) is known, the evaluation of this matrix is only necessary for i) proving that the
transformation leads to a system matrix in Metzler form and ii) to determine enclo-
sures [z] (0) of the initial states as a function of [x] (0) for verified simulations (and
respectively for a backward transformation of the computed results for t > 0). For
i) we use symbolic formula manipulation on the basis of exact values ω∗j considering
the related differential equation (22) to calculate the state-space representation by

ż = ṪT (t) · z̃ + TT (t) · ˙̃z =

[[
dTT (t)

dt
+ TT (t)Ã

]
T(t)

]
z = N · z . (24)

Here, N is Metzler with real parts of the eigenvalues on the diagonal

N = blkdiag (σ1I, . . . , σnI) , I =

[
1 0
0 1

]
, (25)
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which can be shown by a symbolic simplification in terms of the exact values ω∗j that
are subsequently replaced by their conservative intervals [ωj ]. As an analytical so-
lution of Eq. (19), zi ∈ e[σi]t · [zi] (0) holds. Since N is evaluated for the eigenvalues,
Hurwitz stability is verified for σi < 0. Extrema of the conjugate-complex eigenval-
ues are obtained by building the hull over their real parts [σj ] = [min(σj); max(σj)]
as well as their imaginary parts [ωj ] = [min(ωj); max(ωj)], see [10]. Another vari-
ation of this approach is to omit the time-varying transformation by including
the complex, uncertain eigenvector structure directly in the transformation matrix
T̃ ∈ Cn×n. Here, Eq. (20) is reformulated into

T̃ =
[
T̃1, . . . , T̃ñ

]
, where T̃j =

[
[vj ] ,

[
v∗j
]]

(26)

leading to a complex block diagonal matrix Ã = blkdiag
(
Ã1, . . . , Ãñ

)
∈ Cn×n

with

Ãj ∈
[
Ãj

]
=

[
[σj ] +  · [ωj ] 0

0 [σj ]−  · [ωj ]]

]
. (27)

The symbolic computation of the interval enclosures for the states in the new
complex-valued coordinate frame has the advantage that the diagonal structure of
the matrix Ã leads to mutually decoupled state equations. Applying this, the in-

terval [x0] of initial states is transformed into the new coordinates [z̃] =
[
T̃
]−1

· [x],

then the simulation is performed, and the results are, after that, transformed back-

ward into [x] =
[
T̃
]
· [z̃].

This approach, however, may be problematic in cases, where the evaluation of

Eq. (20) leads to excessively wide bounds for T̃ ∈
[
T̃
]

if the complete possible

domain [X ] is considered. These bounds are too wide, if the interval-valued in-

verse
[
T̃
]−1

of
[
T̃
]

does not exist (possibly after using the union over submatrices[
T̃
]

=
⋃
I

[
T̃I

]
resulting from a domain splitting [X ] =

⋃
I [X I ] to enclose the

inverse T̃−1 ∈
⋃
I

[
T̃I
−1
]

with less overestimation) or if it induces an excessive

blow-up of the bounds due to the wrapping effect. Furthermore, this rather pes-

simistic — in terms of conservativity — calculation of
[
T̃
]

may also lead to a

numerical instability in terms of a blow-up of interval enclosures. Controllability
can only be lost, if [X ] contains non-stabilizable points in the state space, which
is detected by infeasible LMIs. For those cases, we make use of an alternative
approach discussed in the next subsection.

3.2 Exponential Interval Enclosure Technique

In [11], an interface is derived between the exponential state enclosure technique
presented in [19] and LMI-based approaches for robust control parameterization.
Here, it is worth noticing, that the original exponential bounding approach in [19]
was developed with no intent to combine it with any control design methodology.
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In the novel approach, an exponential interval enclosure for the true solution x∗(t)
to an IVP with ẋ = f (x) and t0 = 0 is defined as

x∗(t) ∈ [xe] (t) := exp ([Λ] · t) · [xe] (0) , [xe] (0) = [x0] (28)

with

[Λ] := diag[λi] , i = {1, . . . , n} . (29)

This correlates to the extended version of ValEncIA-IVP presented in [19, 20],
where an iteration scheme was developed for the coefficients λi ∈ R introduced
in (28) and (29) based on a Picard iteration

x∗(t) ∈ [xe]
(κ+1)

:= [xe] (0) +

t∫
0

f
(

[xe]
(κ)

(s)
)

ds . (30)

We now substitute the exponential state enclosures (28) for the exact solution
in (30) and differentiate the resulting formula with respect to time leading to

ẋ∗(t) ∈ [Λ]
(κ+1) · exp

(
[Λ]

(κ+1) · t
)
· [xe] (0) = f

(
exp
(

[Λ]
(κ) · t

)
· [xe] (0)

)
(31)

as a fixed-point iteration scheme. The evaluation of (31) is replaced by the expres-
sion

ẋ∗([t]) ∈ [Λ]
(κ+1) · exp

(
[Λ]

(κ+1) · [t]
)
· [xe] (0)

= f
(

exp
(

[Λ]
(κ) · [t]

)
· [xe] (0)

) (32)

to account for the complete time interval t ∈ [t] = [0 ; T ]. In the case of a converging
iteration process given by Eqs. (31) and (32), the relations

[λi]
(κ+1) ⊆ [λi]

(κ)
and [Λ]

(κ+1) ⊆ [Λ]
(κ)

(33)

as well as

exp
(

[Λ]
(κ+1)

[t]
)
⊆ exp

(
[Λ]

(κ) · [t]
)

(34)

hold. Applying further reformulations of (32) according to [19, 20] as well as the
convergence properties (33) and (34), the iteration formula

[λi]
(κ+1)

:=
fi

(
exp

(
[Λ]

(κ) · [t]
)
· [xe] (0)

)
exp

(
[λi]

(κ) · [t]
)
· [xe,i] (0)

, i ∈ {1, . . . , n}, (35)

is obtained for the interval parameter [λi] of the desired state enclosure. Note that
the value 0 has to be excluded from the state enclosure or handled in another way in
the computation of Eq. (35), because the involved division only holds for 0 6∈ [xe,i].
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As the final result of the iteration (35), the solution of all reachable states at t = T
(i.e., at the end of the considered integration horizon) is given by

x∗(t) ∈ [xe] (t) := exp ([Λ] · T ) · [xe] (0) , (36)

where [Λ] is composed of the result obtained in the final iteration step.
Since we work with systems with conjugate complex eigenvalues, the decoupling

of the state equations — as one of the requirements for a maximization of efficiency
of the exponential enclosure approach along with a domination by asymptotically
stable, linear dynamics [19] — is not possible for those systems if only a transfor-
mation into real Jordan canonical form is performed. A possible solution proposed
by the authors maintains the decoupling properties approximately by exploiting
a transformation of a point-valued realization embedded in the uncertain system
model into the complex Jordan canonical form. Both, linear and nonlinear, sys-
tems with uncertain parameters can be decoupled approximately if the matrix of
the eigenvectors of the system’s Jacobian, evaluated at the corresponding interval
midpoints is used to perform the coordinate transformation before application of
Eq. (35). After the computation of the complex-valued state enclosures, the re-
sults are transformed back into the original coordinates. Further details can be
found in [11, 18–20]. The basic simulation routine according to Eq. (28)–(36) was
published in [19,20] with a fixed, time- and state-independent integration step size.
For the considered application scenario, it was extended by a simple step-size con-
trol strategy in [11] to guarantee numerical efficiency of the exponential enclosure
technique. The step-size control strategy determines the most appropriate step size
T = Tk according to

Tk = max

{
tmin,

1

10
· min
i∈I∗

{
inf

{
−1

< ([λi])

}}}
, (37)

for k ∈ {2, 3, . . .}, where I∗ denotes the index set for all states and respective pa-
rameter enclosures i ∈ {1, . . . , n} for which the relation 0 6∈ [λi] holds. In (37), the
value T1 is set to T1 = tmin. Furthermore, the generally complex-valued enclosures
[λi] in (37) are set to the results of the iteration that was performed during the eval-
uation of the state enclosures according to (35) for the last temporal discretization
slice [t] = [0 ; Tk−1], where the initial point of time of each slice is shifted to zero
without loss of generality for time-invariant ODEs, cf. (35). Hence, this procedure
for the adaptation of the integration step size T by the sequence {T1, T2, . . .} results

in the computation of state enclosures at the points of time t = tk with tk =
k∑
j=1

Tj

instead of an equidistant grid tk = k · T that would have to be adjusted to the
fastest time constant for the complete simulation time horizon.
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4 Application Scenario 1: High-Bay Rack Feeder

The first considered scenario is a high-bay rack feeder as presented in Fig. 5. Since
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Figure 5: Mechanical model of the stacker crane.

this is an existing test-rig at the Chair of Mechatronics at the University of Rostock,
previous work (cf. [2, 19]) has already developed a control-oriented modeling as an
elastic multibody system. This multibody model consists of three rigid bodies,
namely a carriage with the mass mS , a cage movable on a vertical double beam
structure with mass mK and the mass moment of inertia θK , as well as an end mass
mE at the tip of the beam. A Bernoulli beam defines the elastic component with
the density ρ, the cross sectional area A, Young’s modulus E, the second moment
of area IzB , and the length l. A dimensionless system parameter

κ (t) =
xK (t)

l
(38)

denotes the time-varying vertical position xK(t) of the cage on the beam and is
chosen as the uncertain parameter of the system. A Ritz ansatz

v (x, t) =
[

¯̄v1 (x) ¯̄v2 (x)
] [ v1 (t)

v2 (t)

]
with (39)

¯̄v1 (x) =
3

2

(x
l

)2

− 1

2

(x
l

)3

and ¯̄v2 (x) =
(x
l

)2

, (40)

is employed to describe the bending deflection of the beam structure by the corre-
sponding elastic degrees of freedom, taking into account the first and the second
bending mode. By applying Lagrange’s equations of second kind, cf. [23], a second-
order ODE model

Mq̈ (t) + Dq̇ (t) + Kq (t) = h · (FSM (t)− FSR (t)) (41)

can be derived with the vector of generalized coordinates

q (t) =
[
yS (t) v1 (t) v2 (t)

]T
. (42)
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Assuming an underlying velocity control operating on the electric drive for the
carriage with mass mS , the resulting dynamics for ÿS can be replaced by a first-
order lag system with the time constant T1y according to

T1y ÿS (t) + ẏS (t) = vS (t)− vS0 (43)

with the usually negligibly small input disturbance vS0. Substituting the ODE (43)
into (41) leads to the equations of motion that are finally given by

q̈ = −M−1
y Kyq−M−1

y Dyq̇ + M−1
y hyvS , (44)

with the carriage velocity vS as the new control input uy. Here, the modified mass
matrix

My(κ) =

 T1y 0 0
m12 m22 m23

m13 m23 m33

 (45)

is given with

m12 =
3

8
ρAl +

mKκ
2

2
(3− κ) +mE ,

m13 =
1

3
ρAl +mK · κ2 +mE ,

m22 =
33

140
ρAl +

6ρIzB
5l

+
mKκ

4

4
(3− κ)

2
+

9θKκ
2

4l2
(2− κ)

2
+mE ,

m23 =
13

60
ρAl +

5ρIzB
4l

+
mKκ

4

2
(3− κ) +

3θKκ
2

l2
(2− κ) +mE ,

m33 =
1

5
ρAl +

4ρIzB
3l

+mKκ
4 +

4θKκ
2

l2
+mE .

(46)

The damping and the stiffness matrices correspond to

Dy =

 1 0 0

0 3kdEIzB
l3

3kdEIzB
l3

0 3kdEIzB
l3

4kdEIzB
l3

 and Ky(κ) =

 0 0 0
0 k22 k23

0 k23 k33

 (47)

with

k22 =
3EIzB
l3

− 3

8
ρAg − 3mKgκ

3

l

(
1 +

3κ2

20
− 3κ

4

)
− 6mEg

5l
,

k23 =
3EIzB
l3

− 7

20
ρAg +

mKgκ
3

l

(
3κ

4
− 2

)
− 5mEg

4l
,

k33 =
4EIzB
l3

− 1

3
ρAg − 4mKgκ

3

3l
− 4mEg

3l
.

(48)

Finally, the input vector of generalized forces is represented by h =
[

1 0 0
]T

.
For the purpose of a feedback control design, the system is transformed into its
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state-space representation

ẋy =

[
0 I

−M−1
y Ky −M−1

y Dy

] [
q
q̇

]
+

[
0

M−1
y hy

]
vS (49)

with a parameter uncertainty in My and Ky due to their dependency on κ. For the
simulation, the parameter domain to be considered shall be [κ] = [0.35 ; 0.5]. As

discussed previously, a robust LMI-based controller vS = −K ·
[
q q̇

]T
is designed

according to Sec. 2.1, numerical values can be found in the Appendix. The resulting
interval enclosures are computed by using a transformation into cooperative form.
Fig. 6 shows the result for the carriage position with an initial uncertainty of yS =
[0.1 ; 0.3] m.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 6: Upper and lower bound of the interval for the carriage position yS for all
t ∈ [0 ; tf ]

One can see that the controller works fast and efficiently in reaching the de-
sired operating point yS0 = 0 m. Due to the asymptotic stability, both decoupled
bounds converge to said stationary operating point. If a feedforward control is
implemented, the asymptotic stability would be reduced to input to state stability
(ISS) due to bounded uncertainty in the mass matrix My, typically imposing un-
certainty in the stationary system gain. However, in the depicted simulation, there
is a deviation from the true3 state in the starting phase. This happens due to the
overestimated transformations according to Eqs. (20)–(25) and the resulting over-
estimation of the complex eigenvalues. A possible solution could be to interface
this method with the approaches from [19] e.g. applying complex-valued Jordan
canonical forms. It becomes clear that this problem only occurs in a short time
interval of approximately 1.9 s till realistic values — regarding the test rig — are
reached in the interval-based simulation. We further compare the response times

3The rack feeder in question is a small scale model on a 1.5m test rig.
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of our method with a grid-based simulation for the parameter κ in Table 1. For
the gridding method, we simulated our original system with ten equally spaced
grid-points included in the interval of κ.

Table 1: Comparison of response times for the interval computation vs. a parameter
gridding.

deviation

computation via ≤ 0.1m ≤ 0.05m ≤ 0.01m

gridding 0.15s 0.25s 0.48s

interval 0.38s 0.51s 0.75s

Here, the times show when the specified deviation to the stationary point yS = 0
is reached in each approach. The problem in gridding is to find suitable values to
include all worst cases. In contrast to that, the interval method definitely includes
such cases as it is oriented on the slowest time constant of the overall system. With
that in mind, we can show that except for the short starting phase, the response time
of the controlled system can be estimated well by means of the interval procedure.

5 Application Scenario 2: Inverse Pendulum

The second benchmark application is the stabilization of an inverted pendulum in
its upright position. The control task is schematically represented in Fig. 7.

α(t)

x(t)

F M

m
input force F

desired velocity u

Figure 7: Control of an inverted pendulum on a moving carriage.

According to this, a pendulum of length a = 0.2 m is mounted at the horizontal
foot-point position x on a carriage of the mass M moving along a track. The angle
α denotes the deflection of the pendulum from its unstable upright equilibrium. In
good accuracy, the pendulum can be described by a massless rod, while its mass m
is located in the tip of the pendulum. Under these assumptions, the system can be
described by the following nonlinear autonomous second-order differential equation

ma2 · α̈−ma · cos(α) · ẍ−mga · sin(α) = 0, (50)
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with the gravitational acceleration g = 9.81 m
s2 , and

(M +m) · ẍ−ma · cos(α) · α̈+ma · sin(α) · α̇ = F , (51)

where F is the actuation force applied to the carriage into the positive direction of
motion x. Assuming an underlying velocity control for the carriage in the form of
a first-order lag behavior with the time constant T1 = 0.05 s, the expression (51)
can be replaced by

T1 · ẍ+ ẋ = u , (52)

where u and ẋ represent the desired and actual carriage velocities, respectively.
Hence, the overall system dynamics can be reformulated into a quasi-linear state-
space representation

ẋ =


0 0 1 0
0 0 0 1

g·si(α)
a 0 0 − cos(α)

T1a

0 0 0 − 1
T1

x +


0
0

cos(α)
T1a
1
T1

u ,

y =
[
−a · si(α) 1 0 0

]
x , si (α) =

sin(α)

α
,

(53)

with the state vector x =
[
α x α̇ ẋ

]T
and the system input u. The initial state

interval [x](0) is assumed to be represented by an uncertainty in the pendulum angle

according to [x](0) =
[
[α](0) 0 0 0

]T
, where [α](0) = [α(0) ; α(0)].

To obtain a polytopic uncertainty representation (12) from the quasi-linear state-
space representation in terms of a convex combination of extremal system models
for the LMI-based control design, the matrix entries depending on the pendulum
angle α are replaced by the two independent parameters

p1 =
g · si(α)

a
and p2 =

cos(α)

T1 · a
, (54)

so that the parameter-dependent system matrix and input vector

A(p) =


0 0 1 0
0 0 0 1
p1 0 0 −p2

0 0 0 − 1
T1

 and b(p) =


0
0
p2
1
T1

 , (55)

respectively, are obtained. This model is used to simulate both gain scheduling
approaches, see Section 2.2, for the uncertain system due to the state-dependency.
The application scenario at hand is an example where a transformation into a co-
operative form is not possible due to too wide intervals and, hence, a non-invertible
transformation matrix occurs. Therefore, the exponential enclosure technique is
used to determine interval enclosures. At first, Approach 1 is investigated for the
control design (11) (Sec. 2).
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Figure 8: Interval enclosure for the pendulum angle α for all t ∈ [0 ; tf ].

Fig. 8 shows the resulting interval enclosure for the simulated model, exemplary

for the third run (N = 3) with the initial state domain
[
X (0)

]
=
[
−π2 + ε ; π

2 − ε
]
.

Here, one can clearly see that the controller stabilizes the system dynamics suc-
cessfully in its operating point. Furthermore, the interval diameter is decreasing
once the operating point has been reached. Numerical results for the sequence of
controller gains and the hull over the angle intervals for t ∈ [0 ; tf ] are given in
Table 2. The first run shows the initial simulation over the complete time horizon
with the most conservative controller gains resulting from the initial interval. In
the second run, we see that the controller gains decrease due to a less conservative
interval box describing the interval enclosure over the complete time horizon. This
is repeated in the third run. The simulation shows, that a further reduction is not
possible and, hence, the optimal solution has been found.

Table 2: Simulation results for Approach 1: Controller gains and enclosure of the
first state variable, where underlined digits highlight the values identical between
two successive iterations.

run i K
[
X (i)

]
1

k1 k2 k3 k4 inf sup

1 96.54707 15.3023677 -0.472897180 -4.99555847 -0.1521028 1.0481524366

2 94.68120 15.0066626 -0.463765567 -4.89774783 -0.1721871 1.0481472189

3 94.68119 15.0066613 -0.463765526 -4.89774740 -0.1721838 1.0481472163

For the application scenario at hand, Approach 2 described in Sec. 2.2.2 does
not provide an improved control accuracy. However, we gain the information, when
certain components of the state vector are mapped into themselves, see Fig. 9 as
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a simulation-based verification of the contraction property towards the asymptot-
ically stable equilibrium. Here, the interval boxes are depicted exemplarily for α

t1 0.002
t2 0.004
t3 0.007
t4 0.009
t5 0.075
t6 0.395
t7 0.716
t8 1.028
t9 1.334
t10 5.000

Figure 9: Approach 2: Intervalboxes for α and α̇ for each predefined time step tζ
(depicted on a logarithmic temporal axis).

and α̇ over the time horizon tf . Note, that due to the step-size control strategy, we
only have comparable enclosures for the fixed time steps tζ ∈ {0, τi∗ , τ2i∗ , . . . , tf},
which were already introduced in 2 as the points of time where the controller gains
change, are calculated on the basis of the step size TK from Eq. (37) by

i∗ =

⌈
L

ζend

⌉
, (56)

where L is the number of all discretization steps from before, see the table in
Fig. 9. Those time steps tζ are featured logarithmically, because — as predicted —
much denser time steps where needed for the beginning phase where the dynamics
is more stiff than close to the steady state. Moreover, it must be noted, that
for small time steps, the exponential enclosure is unnecessary conservative due to
the involved transformation of the model into an approximately decoupled form.
However, the stabilizing behavior is clearly visible and once the system gets close
to the equilibrium, interval enclosures are getting tighter by exploiting the step size
selection according to Eq. (37).
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6 Conclusions and Future Work

Uncertain systems were investigated in forms of descriptions with parameter un-
certainty as well as a nonlinear models, where the uncertainty was given by the
state-dependency of the system matrix. Two gain scheduling approaches were
proposed for a feedback control synthesis and implementation, with the aim of
improving control accuracy especially for the nonlinear system and its state de-
pendency. Hence, in order to apply gain scheduling, a reliable verified enclosure
technique for the states needs to be found, especially when using uncertainty due to
state dependency since it directly influences the robust controller gains. Here, two
methods were discussed, a transformation into cooperative form and an exponential
interval enclosure technique. Both were investigated for applicability and general
instructions for their respective choice were given. Successful simulations for real-
life application scenarios verify the approaches. Future work will concentrate on
applying the presented robust control strategy to real-life scenarios in electrical
circuits as well as mechanical systems.

A Numerical Values of Interval Matrices

A.1 Application Scenario 1

Concerning the first application scenario (control of the high-bay rack feeder), the
numerical values for the controlled system (49) are

AC = (A−BK)

=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1.44 · 103 8.15 · 103 9.43 · 103 −0.28 · 103 0.03 · 103 −0.09 · 103

[a51] [a52] [a53] [a54] [a55] [a56]
[a61] [a62] [a63] [a64] [a65] [a66]


with

[a51] = [0.168 ; 0.207] · 105 [a52] = [−1.048 ; −0.840] · 105

[a53] = [0.121 ; 0.254] · 105 [a54] = [0.032 ; 0.040] · 105

[a55] = [−0.004 ; −0.003] · 105 [a56] = [0.012 ; 0.016] · 105

and

[a61] = [−0.194 ; −0.154] · 105 [a62] = [0.745 ; 0.957] · 105

[a63] = [−0.401 ; −0.270] · 105 [a64] = [−0.038 ; −0.029] · 105

[a65] = [0.003 ; 0.005] · 105 [a66] = [−0.015 ; −0.011] · 105 .
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This is transformed into

ÃC =


[ã11] 0 0 0 0 0

0 [ã22] 0 0 0 0
0 0 [ã33] 0 0 0
0 0 0 [ã44] 0 0
0 0 0 0 [ã55] 0
0 0 0 0 0 [ã66]

 · 103

with the closed-loop matrix entries

[ã11] = 〈−1.90 + 0i, 0.181〉 [ã22] = 〈−0.021 + 0.15i, 0.004〉
[ã33] = 〈−0.02− 0.14i, 0.004〉 [ã44] = 〈−0.006 + 0i, 0.001〉
[ã55] = 〈−0.017 + 0.03i, 0.005〉 [ã66] = 〈−0.017− 0.03i, 0.005〉

in the midpoint-radius-form [a] = 〈midpoint, radius〉, where the intervals are roun-
ded in outward direction to the number of displayed digits.

A.2 Application Scenario 2

The second application scenario (control of the inverse pendulum) is given by
Eq. (53) with

AC(α) =


0 0 1 0
0 0 0 1

[a]31 [a]32 [a]33 [a]34

[a]41 [a]42 [a]43 [a]44


with

[a]31 = [−9.624 ; −0.708] · 103 [a]32 = [0.003 ; 0.048] · 103

[a]33 = [−1.531 ; −0.120] · 103 [a]34 = [0.031 ; 0.400] · 103

[a]41 = [−1.931 ; −1.930] · 103 [a]42 = [0.009 ; 0.010] · 103

[a]43 = [−0.307 ; −0.306] · 103 [a]44 = [0.079 ; 0.080] · 103

considering the initial uncertainty of [α](0) =
[
−π2 + ε ; π

2 − ε
]
.
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