Planar semilattices and nearlattices with eighty-three subnearlattices

Czédli, Gábor: Planar semilattices and nearlattices with eighty-three subnearlattices. In: Acta scientiarum mathematicarum 86. pp. 117-165. (2020)

[img] Cikk, tanulmány, mű
math_086_numb_001-002_117-165.pdf
Hozzáférés joga: Campus

Download (691kB)

Abstract

Finite (upper) nearlattices are essentially the same mathematical entities as finite semilattices, finite commutative idempotent semigroups, finite join-enriched meet semilattices, and chopped lattices. We prove that if an nelement nearlattice has at least 83 · 2 n−8 subnearlattices, then it has a planar Hasse diagram. For n > 8, this result is sharp.

Item Type: Article
Heading title: Algebra
Journal or Publication Title: Acta scientiarum mathematicarum
Date: 2020
Number: 86
ISSN: 2064-8316
Page Range: pp. 117-165
Related URLs: http://acta.bibl.u-szeged.hu/69543/
DOI: https://doi.org/10.14232/actasm-019-573-4
Uncontrolled Keywords: Matematika, Algebra
Additional Information: Bibliogr.: p. 162-165. ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.01. Mathematics
Date Deposited: 2020. Jul. 27. 10:17
Last Modified: 2020. Jul. 27. 10:17
URI: http://acta.bibl.u-szeged.hu/id/eprint/69366

Actions (login required)

View Item View Item