Czédli Gábor: Planar semilattices and nearlattices with eighty-three subnearlattices. In: Acta scientiarum mathematicarum 86. pp. 117-165. (2020)
![]() |
Cikk, tanulmány, mű
math_086_numb_001-002_117-165.pdf Restricted to: SZTE network Download (691kB) |
Abstract
Finite (upper) nearlattices are essentially the same mathematical entities as finite semilattices, finite commutative idempotent semigroups, finite join-enriched meet semilattices, and chopped lattices. We prove that if an nelement nearlattice has at least 83 · 2 n−8 subnearlattices, then it has a planar Hasse diagram. For n > 8, this result is sharp.
Item Type: | Article |
---|---|
Heading title: | Algebra |
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2020 |
Number: | 86 |
ISSN: | 2064-8316 |
Page Range: | pp. 117-165 |
Related URLs: | http://acta.bibl.u-szeged.hu/69543/ |
DOI: | 10.14232/actasm-019-573-4 |
Uncontrolled Keywords: | Matematika, Algebra |
Additional Information: | Bibliogr.: p. 162-165. ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.01. Mathematics |
Date Deposited: | 2020. Jul. 27. 10:17 |
Last Modified: | 2020. Jul. 27. 10:17 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/69366 |
Actions (login required)
![]() |
View Item |