Stability of positive equilibrium of a Nicholson blowflies model with stochastic perturbations

Van Hien Le; Lan-Huong Nguyen Thi: Stability of positive equilibrium of a Nicholson blowflies model with stochastic perturbations. (2020)

[thumbnail of ejqtde_2020_021.pdf]
Előnézet
Teljes mű
ejqtde_2020_021.pdf

Letöltés (358kB) | Előnézet

Absztrakt (kivonat)

This paper is concerned with the stability problem of the positive equilibrium of a Nicholson’s blowflies model with nonlinear density-dependent mortality rate subject to stochastic perturbations. More specifically, the existence of a unique positive equilibrium of a Nicholson’s blowflies model described by the delay differential equation N 0 (t) = − a − be−N(t) + βN(t − τ)e −γN(t−τ) is first quoted. It is assumed that the underlying model in noisy environments is exposed to stochastic perturbations, which are proportional to the derivation of the state from the equilibrium point. Then, by utilizing a stability criterion formulated for linear stochastic differential delay equations, explicit stability conditions are obtained. An extension to models with multiple delays is also presented.

Mű típusa: Folyóirat
Folyóirat/könyv/kiadvány címe: Electronic journal of qualitative theory of differential equations
Dátum: 2020
Szám: 21
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2020.1.21
Kulcsszavak: Differenciálegyenlet
Megjegyzések: Bibliogr.: p. 10-11. ; összefoglalás angol nyelven
Feltöltés dátuma: 2020. jún. 08. 09:07
Utolsó módosítás: 2021. okt. 20. 13:52
URI: http://acta.bibl.u-szeged.hu/id/eprint/69525
Bővebben:
Tétel nézet Tétel nézet