Strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrodynamics convection without thermal diffusion

Zhong Xin: Strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrodynamics convection without thermal diffusion. (2020)

[thumbnail of ejqtde_2020_024.pdf]
Preview
Teljes mű
ejqtde_2020_024.pdf

Download (530kB) | Preview

Abstract

We are concerned with the Cauchy problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in R2 . We show that there exists a unique local strong solution provided the initial density, the magnetic field, and the initial temperature decrease at infinity sufficiently quickly. In particular, the initial data can be arbitrarily large and the initial density may contain vacuum states.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2020
Number: 24
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2020.1.24
Uncontrolled Keywords: Differenciálegyenlet
Additional Information: Bibliogr.: p. 22-23. ; összefoglalás angol nyelven
Date Deposited: 2020. Jun. 08. 09:07
Last Modified: 2021. Oct. 20. 13:52
URI: http://acta.bibl.u-szeged.hu/id/eprint/69528

Actions (login required)

View Item View Item