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Abstract. Let N ≥ 2 be an integer. For each real number s ∈ (0, 1) we denote by (−∆)s

the corresponding fractional Laplace operator. First, we investigate the eigenvalue prob-
lem (−∆)su = λV(x)u on RN , where V : RN → R is a given function. Under suitable
conditions imposed on V we show the existence of an unbounded, increasing sequence
of positive eigenvalues. Next, we perturb the above eigenvalue problem with a frac-
tional (t, p)-Laplace operator, when t ∈ (0, 1) and p ∈ (1, ∞) are such that t < s and
s− N/2 = t− N/p. We show that when the function V is nonnegative on RN , the set
of eigenvalues of the perturbed eigenvalue problem is exactly the unbounded interval
(λ1, ∞), where λ1 stands for the first eigenvalue of the initial eigenvalue problem.
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1 Introduction

Let N ≥ 2 be an integer. For each real numbers p ∈ (1, ∞) and s ∈ (0, 1) and each function
u : RN → R we define the nonlocal operator

(−∆p)
su(x) := 2 lim

ε↘0

∫
|x−y|≥ε

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp dy, x ∈ RN . (1.1)

For p = 2 the above definition reduces to the linear fractional Laplacian denoted by (−∆)s.
For that reason we will refer to (−∆p)s as being a fractional (s, p)-Laplacian operator which is a
nonlinear operator when p ∈ (1, ∞) \ {2}.

1.1 Statement of the problem and motivation

The main goal of this paper is to study an eigenvalue problem for the fractional Laplacian
operator on RN and a perturbed version of this problem when we perturb the fractional
Laplacian by a nonlinear fractional (t, p)-Laplacian . More precisely, first we will study the
eigenvalue problem

(−∆)s u(x) = µV(x)u(x), ∀ x ∈ RN , (1.2)
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2 A. Grecu

where s ∈ (0, 1) is a given real number, µ is a real parameter and V : RN → R is a function
that may change sign and which satisfies the hypothesis

(Ṽ) V ∈ L1
loc

(
RN) , V+ = V1 + V2 6= 0, V1 ∈ L

N
2s
(
RN) and limx→y |x− y|2sV2(x) = 0, for all

y ∈ RN and lim|x|→∞ |x|2sV2(x) = 0.

Remark 1.1. Note that there exists functions V : RN → R such that V 6∈ L
N
2s
(
RN) but

limx→y |x− y|2sV(x) = 0, for all y ∈ RN and lim|x|→∞ |x|2sV(x) = 0. Indeed, simple compu-
tations show that we can take V(x) = |x|−2s(1 + |x|2s)−1[ln(2 + |x|−2s)]−(2s)/N , if x 6= 0 and
V(0) = 1.

Next, we will study a perturbation of problem (1.2), namely

(−∆)s u(x) +
(
−∆p

)t u(x) = λV(x)u(x), ∀ x ∈ RN , (1.3)

under the assumption

0 < t < s < 1 and s− N
2

= t− N
p

, (1.4)

where λ is a real parameter and V : RN → [0, ∞) is a function satisfying the hypothesis (Ṽ).
Note that in the case of problem (1.3) we have V = V+.

A first motivation in studying problems of type (1.2) comes from the paper by Szulkin
& Willem [21] where a similar equation was investigated in the case when the fractional
Laplacian (−∆)s is replaced by the classical Laplace operator ∆. In particular, we note that
assumption (Ṽ) imposed here to the weight function V is suggested by condition (H) from
[21]. At the same time we recall that some generalizations of the results from [21] to the
case when the Laplace operator ∆ is replaced by a more general class of degenerate elliptic
operators of type div(|x|α∇), with α ∈ (0, 2), was studied by Mihăilescu & Repovš in [18]. In
the case of nonlocal operators, problems of type (1.2) were mainly investigated on bounded
domains under the homogeneous Dirichlet boundary condition. Among the results obtained
in this direction we recall the recent articles by Franzina & Palatucci [13], Lindgren & Lindqvist
[15], Brasco, Parini & Squassina [3], Del Pezzo & Quass [5], Ferreira & Pérez-Llanos [11],
Fărcăs, eanu [8], Del Pezzo, Ferreira & Rossi [4], Ercole, Pereira, & Sanchis [7]. Much less
papers were devoted to the study of problem (1.2) on the whole Euclidian space RN . Here we
just recall the study by Frank, Lenzmann, & Silvestre from [12] where the issue of the existence
and uniqueness of bounded radial solutions which vanishes at infinity for problems of type
(1.2) was considered. More precisely, in [12, Theorem 2.1] it is showed that if u(x) = u(|x|) is
a radial and bounded solution of (1.2) which vanishes at infinity then u(0) = 0 implies u ≡ 0,
provided that the weight function V is radial and non-decreasing on RN and V ∈ C0,γ(RN)

for some real number γ > max{0, 1− 2s}.

Regarding the problem (1.3) we recall that it was studied on bonded domains form the
Euclidian space RN under the homogeneous Dirichlet boundary condition by Fărcăs, eanu,
Mihăilescu, & Stancu-Dumitru in [10], in the case when V ≡ 1. In particular, we note that
assumption (1.4) imposed here is suggested by condition (3) from [10]. We point out that in
the case when the nonlocal operators from equation (1.3) are replaced by the corresponding
differential operators (Laplacian and p-Laplacian) the resulting problem was analysed by Mi-
hăilescu & Stancu-Dumitru in [19], while in the case of bounded domains similar results were
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obtained in [1, 9, 16, 17] under different boundary conditions. Thus, in particular, the results
from this paper complement to the case of nonlocal operators some earlier results obtained in
the case of differential operators.

The rest of the paper is organized as follows: in the next two subsections we introduce the
natural function space setting where problems (1.2) and (1.3) will be studied and we point out
the main results of the paper; in Section 2 we state and prove an auxiliary result that will be
useful for the analysis of the main results; the last two sections are devoted to the proofs of
the main results.

1.2 Fractional Sobolev spaces

In this subsection we introduce the natural function spaces where we will study equations
(1.2) and (1.3) and we will recall some of their properties which will be useful in our analysis.
For more details we refer the reader to the book by Grisvard [14] and to the papers [2, 3, 5, 6].

First, by [3, p. 1814] we recall that the natural setting for equations involving the operator(
−∆p

)t is the fractional Sobolev space Dt,p
0 (RN) defined as the closure of C∞

0 (RN) under the
norm

‖u‖t,p :=
(∫

RN

∫
RN

|u(x)− u(y)|p
|x− y|N+tp dxdy

)1/p

.

The above function space is a reflexive Banach space. Moreover, in the particular case when
p = 2 the function space Dt,2

0 (RN) is a Hilbert space.
From the above discussion it follows easily that the natural function space where we will

study equation (1.2) will be the Hilbert space Ds,2
0 (RN). On the other hand, we note that

in equation (1.3) are involved two nonlocal operators, (−∆)s and
(
−∆p

)t, respectively. The
natural function space where we analyse problems involving (−∆)s is the fractional Sobolev
space Ds,2

0 (RN), while the function space where we study problems involving Dt,p
0 (RN) is

the fractional Sobolev space Dt,p
0 (RN). Thus, in the case of equation (1.3) we should decide

which of the spaces Ds,2
0 (RN) and Dt,p

0 (RN) is the natural function space where we can seek
solutions for the problem. A key condition in this case is assumption (1.4), which in view of
[14, Theorem 1.4.4.1] assures that

Ds,2
0 (RN) ⊂ Dt,p

0 (RN). (1.5)

Thus, the natural function space where we should study problem (1.3) is again the Hilbert
space Ds,2

0 (RN).

Next, note that by [6, Theorem 6.5] there exists a positive constant C = C(N, s) such that

‖u‖L2∗s (RN) ≤ C ‖u‖s,2 , (1.6)

where 2∗s := 2N
N−2s is the so called fractional critical exponent. Consequently, the space Ds,2

0 (RN)

is continuously embedded in L2∗s (RN).
Further, we point out that a Hardy-type inequality can be established on the fractional

Sobolev spaces. More precisely, by [2, Theorem 6.3] (see also [20]) we know that there exists a
positive constant C = C(N, s) such that

C
∫

RN

u(x)2

|x|2s dx ≤
∫

RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy, ∀ u ∈ C∞

0

(
RN
)

. (1.7)
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1.3 The main results

In this subsection we make precise the concept of eigenvalue for the equations (1.2) and (1.3)
and we present the main results of this paper.

Definition 1.2. We say that µ ∈ R is an eigenvalue of problem (1.2), if there exists u ∈
Ds,2

0 (RN) \ {0} such that

∫
RN

∫
RN

(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+2s dxdy = µ

∫
RN

V(x)u(x)ϕ(x) dx, (1.8)

for all ϕ ∈ Ds,2
0 (RN). Furthermore, u from the above relation will be called an eigenfunction

corresponding to the eigenvalue µ.

The main result concerning problem (1.2) is given by the following theorem

Theorem 1.3. Assume that condition (Ṽ) is fulfilled. Then problem (1.2) has an unbounded, increasing
sequence of positive eigenvalues.

Definition 1.4. We say that λ ∈ R is an eigenvalue of problem (1.3), if there exists u ∈
Ds,2

0 (RN) \ {0} such that

∫
RN

∫
RN

(1 + |u(x)− u(y)|p−2)(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+tp dxdy

= λ
∫

RN
V(x)u(x)ϕ(x) dx ,

(1.9)

for all ϕ ∈ Ds,2
0 (RN). Furthermore, u from the above relation will be called an eigenfunction

corresponding to the eigenvalue λ.

Assume that V : RN → [0, ∞) is a function which satisfies condition (Ṽ) and define

λ1 := inf
u∈C∞

0 (RN)\{0}

‖u‖2
s,2∫

RN
V(x)u2 dx

. (1.10)

The main result regarding problem (1.3) is given by the following theorem.

Theorem 1.5. Assume that V : RN → [0, ∞) is a function which satisfies condition (Ṽ). Under
assumption (1.4), the set of eigenvalues of problem (1.3) is the open interval (λ1, ∞). Moreover, the
corresponding eigenfunctions can be chosen to be non-negative.

Remark. A simple analysis of the proof of Theorem 1.3 shows that in the case when function
V satisfies V(x) ≥ 0, for all x ∈ RN , then λ1 defined in relation (1.10) is the smallest eigenvalue
of problem (1.2).

2 An auxiliary result

In this section we prove an auxiliary result which will play an important role in our subsequent
analysis. More precisely, we prove the following lemma.
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Lemma 2.1. Assume that condition (Ṽ) holds true. Then the functional T : Ds,2
0 (RN)→ R,

T(u) :=
∫

RN
V+(x)u2 dx

is weakly continuous.

Proof. First, we show that the mapping Ds,2
0 (RN) 3 u→

∫
RN V1(x)u2 dx is weakly continuous.

Let {un} ⊂ Ds,2
0 (RN) be a sequence which converges weakly to u ∈ Ds,2

0 (RN). Using the
fact that Ds,2

0 (RN) is continuously embedded in L2∗s (RN), we find that {un} converges weakly
to u in L2∗s (RN) = L

2N
N−2s (RN). We infer that {u2

n} converges weakly to u2 in L
N

N−2s (RN).
Define W : L

N
N−2s (RN)→ R by

W(ξ) :=
∫

RN
V1(x)ξ dx, ∀ξ ∈ L

N
N−2s (RN).

Clearly, W is linear. Since V1 ∈ L
N
2s (RN) by Hölder’s inequality we deduce that W is also

continuous. Using the above pieces of information we find that

lim
n→∞

W(un) = W(u),

meaning that the mapping Ds,2
0 (RN) 3 u→

∫
RN V1(x)u2 dx is weakly continuous.

In order to finish the proof, we shall prove that the mapping Ds,2
0 (RN)3u→

∫
RN V2(x)u2 dx

is also weakly continuous. Again, let {un} ⊂ Ds,2
0 (RN) be a sequence which converges weakly

to u ∈ Ds,2
0 (RN). Let ε > 0 arbitrary but fixed.

By hypothesis (Ṽ) we deduce that there exists R > 0 such that

|x|2sV2(x) ≤ ε, ∀ x ∈ RN \ BR(0), (2.1)

where BR(0) is the open ball centered at the origin of radius R.
Since {un} converges weakly to u inDs,2

0 (RN) we deduce that {un} is bounded inDs,2
0 (RN).

Thus,

d := C max
{

sup
n
‖un‖s,2 , ‖u‖s,2

}
< +∞ ,

where C is the constant given by relation (1.7).
Using relations (1.7) and (2.1) we find∫

RN\BR(0)
V2(x)u2

n dx ≤ ε
∫

RN\BR(0)

u2
n
|x|2s dx ≤ ε

C
‖un‖2

s,2 ≤ εd2 . (2.2)

Analogously, ∫
RN\BR(0)

V2(x)u2 dx ≤ ε

C
‖u‖2

s,2 ≤ εd2 . (2.3)

Recalling again hypothesis (Ṽ) and using a compactness argument we find that BR(0) is
covered by a finite number of closed balls Br1(x1), Br2(x2), . . . , Brk(xk) such that for each j ∈
{1, . . . , k} we have

|x− xj|2sV2(x) ≤ ε, ∀ x ∈ Brj(xj). (2.4)

Next, we see that there exists r > 0 such that for each j ∈ {1, . . . , k} the following relation
holds

|x− xj|2sV2(x) ≤ ε

k
, ∀ x ∈ Br(xj).
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Again, by relation (1.7) we get∫
Ω

V2(x)u2
n dx ≤ εd2 and

∫
Ω

V2(x)u2 dx ≤ εd2 , (2.5)

where Ω := ∪k
i=1Br(xj). Finally, by relation (2.4) we infer that V2 ∈ L∞(BR(0) \ Ω). Since

BR(0) \Ω is bounded we deduce that V2 ∈ L
N
2s (BR(0) \Ω). Repeating the same arguments

used in the first part of the proof we get

lim
n→∞

∫
BR(0)\Ω

V2(x)u2
n dx =

∫
BR(0)\Ω

V2(x)u2 dx. (2.6)

By (2.2), (2.3), (2.5) and (2.6) we deduce that the mapping Ds,2
0 (RN) 3 u →

∫
RN V2(x)u2 dx is

weakly continuous. Thus, the proof of the lemma is complete.

3 Proof of Theorem 1.3

The conclusion of Theorem 1.3 will follow from the results of Propositions 3.1 and 3.2 below.

First, we consider the following minimization problem

(P1) minimize
u∈Ds,2

0 (RN)

∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy, under restriction

∫
RN

V(x)u2 dx = 1.

Proposition 3.1. Under the hypothesis (Ṽ), problem (P1) has a solution e1 ≥ 0. Moreover, e1 is an
eigenfunction of problem (1.2) having its corresponding eigenvalue

µ1 :=
∫

RN

∫
RN

|e1(x)− e1(y)|2
|x− y|N+2s dxdy. (3.1)

Proof. Let {un}n ⊂ Ds,2
0 (RN) be a minimizing sequence of problem (P1), i.e.,

lim
n→∞

∫
RN

∫
RN

|un(x)− un(y)|2
|x− y|N+2s dxdy = inf

w∈Ds,2
0 (RN)

∫
RN

∫
RN

|w(x)− w(y)|2
|x− y|N+2s dxdy

and ∫
RN

V(x)u2
n dx = 1, ∀ n ≥ 1.

It follows that {un} is bounded in Ds,2
0 (RN) and consequently there exists u ∈ Ds,2

0 (RN) such
that un converges weakly to u in Ds,2

0 (RN). Since Ds,2
0 (RN) is a Hilbert space by the weakly

lower semicontinuity of the norm ‖·‖s,2 we get

∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy ≤ lim inf

n→∞

∫
RN

∫
RN

|un(x)− un(y)|2
|x− y|N+2s dxdy

= inf
w∈Ds,2

0 (RN)

∫
RN

∫
RN

|w(x)− w(y)|2
|x− y|N+2s dxdy.

On the other hand, using the fact that V(x) = V+(x)−V−(x) we deduce that∫
RN

V−(x)u2
n dx =

∫
RN

V+(x)u2
n dx− 1, ∀ n ≥ 1.
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Fatou’s lemma and Lemma 2.1 yield∫
RN

V−(x)u2 dx ≤ lim inf
n→∞

∫
RN

V−(x)u2
n dx =

∫
RN

V+(x)u2 dx− 1,

or
1 ≤

∫
RN

V(x)u2 dx. (3.2)

Define
e1 :=

u(∫
RN V(x)u2 dx

)1/2 .

It is easy to check that ∫
RN

V(x)e2
1 dx = 1.

Furthermore, using relation (3.2) we get

∫
RN

∫
RN

|e1(x)− e1(y)|2
|x− y|N+2s dxdy =

∫
RN

∫
RN

∣∣∣∣ u(x)

(
∫

RN V(z)u2 dz)
1/2 −

u(y)

(
∫

RN V(z)u2 dz)
1/2

∣∣∣∣2
|x− y|N+2s dxdy

=
1∫

RN V(z)u2 dz

∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy

≤
∫

RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy

≤ inf
w∈Ds,2

0 (RN)

∫
RN

∫
RN

|w(x)− w(y)|2
|x− y|N+2s dxdy.

This shows that e1 is a solution of problem (P1). Moreover, it is easy to see that |e1| is also
a solution of problem (P1) and consequently we can assume that e1 ≥ 0. Next, for each
ϕ ∈ Ds,2

0 (RN) we define f : R→ R by

f (ε) =

∫
RN

∫
RN

|e1(x)− e1(y) + ε(ϕ(x)− ϕ(y))|2
|x− y|N+2s dxdy∫

RN
V(x) (e1(x) + εϕ(x))2 dx

.

Clearly, f is of class C1 and f (0) ≤ f (ε), for all ε ∈ R. Hence, 0 is a minimum point of f and
thus,

f ′(0) = 0,

or ∫
RN

∫
RN

(e1(x)− e1(y))(ϕ(x)− ϕ(y))
|x− y|N+2s dxdy

∫
RN

V(x)e1(x)2 dx

=
∫

RN

∫
RN

|e1(x)− e1(y)|2
|x− y|N+2s dxdy

∫
RN

V(x)e1(x)ϕ(x) dx.

Since ϕ ∈ Ds,2
0 (RN) has been chosen arbitrarily we deduce that the above relation holds true

for each ϕ ∈ Ds,2
0 (RN). Taking into account that

∫
RN V(x)e2

1 dx = 1 it follows that µ1 defined
in (3.1) is an eigenvalue of problem (1.2) with the corresponding eigenfunction e1. Thus, the
proof is complete.
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Next, in order to find other eigenvalues of problem (1.2) we solve the following minimiza-
tion problems

(Pn)
minimize
u∈Ds,2

0 (RN)

∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy, under restrictions

∫
RN

V(x)u2 dx = 1 and

∫
RN

∫
RN

(ek(x)− ek(y))(u(x)− u(y))
|x− y|N+2s dxdy = 0, ∀ k ∈ {1, . . . , n− 1},

where ek represents the solution of problem (Pk), for k ∈ {1, . . . , n− 1}.

Proposition 3.2. Assume that the hypothesis (Ṽ) is fulfilled. Then, for every n ≥ 2 problem (Pn) has
a solution en. Moreover, en is an eigenvector of problem (1.2) corresponding to the eigenvalue

µn :=
∫

RN

∫
RN

|en(x)− en(y)|2
|x− y|N+2s dxdy.

Furthermore, limn→∞ µn = ∞.

Proof. The existence of en can be obtained in the same manner as in proof of Theorem 1.3, but
replacing Ds,2

0 (RN) with its closed subspace

Xn :=
{

u∈Ds,2
0 (RN) :

∫
RN

∫
RN

(ek(x)− ek(y))(u(x)− u(y))
|x− y|N+2s dxdy = 0, for k ∈ {1, . . . , n− 1}

}
.

Next, following the lines of the proof of Theorem 1.3 we find the existence of en ∈ Xn which
verifies∫

RN

∫
RN

(en(x)− en(y))(ϕ(x)− ϕ(y))
|x− y|N+2s dxdy = µn

∫
RN

V(x)en(x)ϕ(x) dx, ∀ ϕ ∈ Xn, (3.3)

where

µn :=
∫

RN

∫
RN

|en(x)− en(y)|2
|x− y|N+2s dxdy

and ∫
RN

V(x)e2
n dx = 1.

We note that for each u ∈ Xn we have∫
RN

V(x)uek dx = 0, ∀ k ∈ {1, . . . , n− 1}.

and ∫
RN

V(x)ejek dx = δj,k, ∀ j, k ∈ {1, . . . , n− 1}.

Hence, for each v ∈ Ds,2
0 (RN) we have

∫
RN

V(x)

[
v−

n−1

∑
j=1

(∫
RN

V(x)vej dx
)

ej

]
ek dx = 0, ∀ k ∈ {1, . . . , n− 1},

or ∫
RN

∫
RN

(ek(x)− ek(y))(ψ(x)− ψ(y))
|x− y|N+2s dxdy = 0, ∀ k ∈ {1, . . . , n− 1},
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where ψ(x) := v(x)−∑n−1
j=1

(∫
RN V(y)vej dy

)
ej(x). This implies that ψ ∈ Xn.

Thus, for each v ∈ Ds,2
0 (RN) relation (3.3) holds true for ϕ = ψ. On the other hand,

∫
RN

∫
RN

(en(x)− en(y))(ek(x)− ek(y))
|x− y|N+2s dxdy = µk

∫
RN

V(x)enek dx = µn

∫
RN

V(x)enek dx = 0,

for all k ∈ {1, . . . , n− 1}. The above pieces of information yield

∫
RN

∫
RN

(en(x)− en(y))(v(x)− v(y))
|x− y|N+2s dxdy = µn

∫
RN

V(x)en(x)v(x) dx, ∀ v ∈ Ds,2
0 (RN),

which implies that

µn :=
∫

RN

∫
RN

|en(x)− en(y)|2
|x− y|N+2s dxdy

is an eigenvalue of problem (1.2) with the corresponding eigenfunction en.
Next, we point out that by construction {en}n is an orthonormal sequence in Ds,2

0 (RN) and
{µn}n is an increasing sequence of positive real numbers. We prove that limn→∞ µn = ∞.

Indeed, let the sequence fn := en√
µn

. Then { fn}n is an orthonormal sequence in Ds,2
0 (RN)

and

‖ fn‖2
s,2 =

1
µn

∫
RN

∫
RN

|en(x)− en(y)|2
|x− y|N+2s dxdy = 1, ∀ n.

Consequently, { fn}n is bounded in Ds,2
0 (RN) and, therefore, there exists f ∈ Ds,2

0 (RN) such
that { fn}n converges weakly to f in Ds,2

0 (RN).
Let m be a positive integer. For each n > m we have

〈 fn, fm〉s,2 :=
∫

RN

∫
RN

( fn(x)− fn(y))( fm(x)− fm(y))
|x− y|N+2s dxdy = 0.

Passing to the limit as n→ ∞ we find that

〈 f , fm〉s,2 = 0, ∀ m.

Since the above relation holds for each positive integer m, we can pass to the limit as m → ∞
and we find that ‖ f ‖s,2 = 0. This means that f = 0 and thus, { fn}n converges weakly to 0 in
Ds,2

0 (RN). Lemma 2.1 assures us that

lim
n→∞

∫
RN

V+(x) f 2
n dx = 0. (3.4)

On the other hand, for each n we have

1
µn

=
1

µn

∫
RN

∫
RN

| fn(x)− fn(y)|2
|x− y|N+2s dxdy =

∫
RN

V(x) f 2
n dx ≤

∫
RN

V+(x) f 2
n dx.

Combining the above estimate with relation (3.4) we find that limn→∞ µn = +∞.
The proof of Proposition 3.2 is complete.
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4 Proof of Theorem 1.5

The proof of Theorem 1.5 will be a simple consequence of Propositions 4.1, 4.2, 4.3 and 4.8
stated below in this section.

We recall that through this section we will assume that V(x) ≥ 0, for all x ∈ RN , and
conditions (1.4) and (Ṽ) hold true. Simple computations show that condition (1.4) implies
p > 2. For each 0 < t < s < 1 and p > 2 we define

ν1 := inf
u∈C∞

0 (RN)\{0}

1
2
‖u‖2

s,2 +
1
p
‖u‖p

t,p

1
2

∫
RN

V(x)u2 dx
. (4.1)

Proposition 4.1. λ1 = ν1.

Proof. First, it is clear that λ1 ≤ ν1. Next, for each u ∈ C∞
0 (RN) and each θ > 0 we have

ν1 ≤

1
2
‖θu‖2

s,2 +
1
p
‖θu‖p

t,p

1
2

∫
RN

V(x)(θu)2 dx
=

1
2
‖u‖2

s,2 +
θp−2

p
‖u‖p

t,p

1
2

∫
RN

V(x)u2 dx
. (4.2)

Letting θ → 0+ and passing to the infimum over u ∈ C∞
0 (RN) in the right hand-side of the

above relation we deduce that ν1 ≤ λ1. The proof of this proposition is complete.

Proposition 4.2. For each λ ∈ (−∞, λ1], problem (1.3) has no nontrivial solutions.

Proof. First, note that if we assume that for some λ ≤ 0 problem (1.3) has a nontrivial solution
denoted by u, then testing in relation (1.9) with ϕ = u we get a contradiction. Thus, for any
λ ∈ (−∞, 0] problem (1.3) does not have nontrivial weak solutions.

Next, let λ ∈ (0, λ1). Assume by contradiction that there exists u ∈ Ds,2
0 (RN) \ {0} a weak

solution of problem (1.3). Taking ϕ = u in (1.9) and by the definition of λ1 we get

λ
∫

RN
V(x)u(x)2 dx = ‖u‖2

s,2 + ‖u‖
p
t,p ≥ λ1

∫
RN

V(x)u(x)2 dx,

a contradiction. It follows that problem (1.3) does not posses nontrivial weak solutions for
any parameter λ ∈ (0, λ1).

In order to complete the proof of the proposition, we shall show that λ1 cannot be an
eigenvalue of problem (1.3). Again, if we assume by contradiction that there exists u ∈
Ds,2

0 (RN) \ {0} such that (1.9) holds with λ = λ1, then letting ϕ = u in (1.9) and by the
definition of λ1 we get

‖u‖2
s,2 + ‖u‖

p
t,p = λ1

∫
RN

V(x)u(x)2 dx ≤ ‖u‖2
s,2 ,

which is equivalent with u ≡ 0, a contradiction. Thus, for λ = λ1 problem (1.3) does not have
nontrivial solutions and thus, the proof of this proposition is now complete.

Proposition 4.3. For each λ ∈ (λ1, ∞) problem (1.3) has a nontrivial solution.
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In order to prove Proposition 4.3, for each λ > λ1 we define the energy functional corre-
sponding to problem (1.3) as Jλ : Ds,2

0 (RN) \ {0} → R given by

Jλ(u) :=
1
2
‖u‖2

s,2 +
1
p
‖u‖p

t,p −
λ

2

∫
RN

V(x)u(x)2 dx.

Using standard arguments one can deduce that Jλ ∈ C1(Ds,2
0 (RN), R) with the derivative

given by

〈J′λ(u), w〉 =
∫

RN

∫
RN

(u(x)− u(y))(w(x)− w(y))
|x− y|N+2s dxdy− λ

∫
RN

V(x)u(x)w(x) dx.

+
∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(w(x)− w(y))
|x− y|N+tp dxdy.

We note that problem (1.3) possesses a nontrivial weak solution for a certain λ if and
only if Jλ possesses a non-trivial critical point. Since we cannot establish the coercivity of Jλ

on Ds,2
0 (RN) we cannot apply the Direct Method in the Calculus of Variations in order to find

critical points for this functional. For that reason we will study the functional Jλ on a subset
of Ds,2(RN), the so-called Nehari manifold defined by

Nλ :=
{

u ∈ Ds,2
0 (RN) \ {0} : 〈J′λ(u), u〉 = 0

}
=

{
u ∈ Ds,2

0 (RN) \ {0} : ‖u‖2
s,2 + ‖u‖

p
t,p = λ

∫
RN

V(x)u(x)2 dx
}

.

Note that if u ∈ Nλ then

Jλ(u) =
(

1
p
− 1

2

)
‖u‖p

t,p < 0 (4.3)

and
λ
∫

RN
V(x)u(x)2 dx > ‖u‖2

s,2 . (4.4)

Lemma 4.4. Nλ 6= ∅.

Proof. Since λ > λ1, we infer that there exists ϕ ∈ Ds,2
0 (RN) \ {0} for which

‖ϕ‖2
s,2 < λ

∫
RN

V(x)ϕ(x)2 dx.

Then there exists θ > 0 such that θϕ ∈ Nλ, i.e.

θ2 ‖ϕ‖2
s,2 + θp ‖ϕ‖p

t,p = λθ2
∫

RN
V(x)ϕ(x)2 dx,

which holds true with

θ =

λ
∫

RN
V(x)ϕ(x)2 dx− ‖ϕ‖2

s,2

‖ϕ‖p
t,p


1

p−2

,

which completes the proof.
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Set
mλ := inf

v∈Nλ

Jλ(v).

Note that by (4.3) we know that mλ < 0. We show that mλ can be achieved on Nλ.

Lemma 4.5. Every minimizing sequence of functional Jλ on Nλ is bounded in Ds,2
0 (RN) and

Dt,p
0 (RN).

Proof. Let {un}n ⊂ Nλ be a minimizing sequence Jλ on Nλ. We prove that
{
‖un‖2

s,2
}

n is a
bounded sequence. Assume the contrary that ‖un‖2

s,2 → ∞, as n → ∞. Next, let wn := un
‖un‖s,2

.

Therefore ‖wn‖s,2 = 1 for each n, which means that {wn}n is bounded in Ds,2
0 (RN). Thus,

there exists w ∈ Ds,2
0 (RN) such that wn converges weakly to w in Ds,2

0 (RN).
Since un ∈ Nλ, for each n, by (4.4) we deduce that λ

∫
RN V(x)w2

n dx > 1. Passing to the
limit as n→ ∞ and taking into account Lemma 2.1, we obtain that

λ
∫

RN
V(x)w2 dx ≥ 1. (4.5)

On the other hand, since un ∈ N≥ and p > 2, we get

‖wn‖p
t,p = ‖un‖2−p

s,2

(
λ
∫

RN
V(x)w2

n dx− 1
)
→ 0, as n→ ∞.

The above relation implies that wn converges strongly to 0 in Dt,p
0 (RN) and, consequently

w = 0, which represents a contradiction with (4.5). It follows that
{
‖un‖s,2

}
n is bounded.

Since un ∈ Nλ, by relation (4.3) we deduce that

Jλ(un) =

(
1
p
− 1

2

)
‖un‖p

t,p =

(
1
2
− 1

p

)(
‖un‖2

s,2 −
∫

RN
V(x)u2

n dx
)

.

Since
{
‖un‖s,2

}
n is a bounded sequence and using the weak continuity of the mapping

Ds,2
0 (RN) 3 u →

∫
RN V(x)u2 dx given by Lemma 2.1, we deduce that

{
‖un‖t,p

}
n is also a

bounded sequence, and thus, the proof is complete.

Lemma 4.6. mλ ∈ (−∞, 0).

Proof. We already know that mλ < 0. Let {un}n ⊂ Nλ be a minimizing sequence Jλ on Nλ (in
other words, {un}n is a minimizer of mλ). Using the previous lemma we deduce the existence
of a positive constant C such that ‖un‖2

s,2 ≤ C and ‖un‖p
t,p ≤ C, for each positive integer n.

Since p > 2 we have

Jλ(un) =

(
1
p
− 1

2

)
‖un‖p

t,p ≥
(

1
p
− 1

2

)
C > −∞.

Thus, mλ is bounded from below by the constant
( 1

p −
1
2

)
C, which implies that mλ ∈ (−∞, 0).

This completes the proof of this lemma.

Lemma 4.7. There exists u ∈ Nλ such that Jλ(u) = mλ.
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Proof. Let {un}n ⊂ Nλ be a minimizing sequence for Jλ on Nλ, i.e.

Jλ(un) =

(
1
p
− 1

2

)
‖un‖p

t,p → mλ as n→ ∞.

By Lemma 4.5, we have that Nλ is bounded in Ds,2
0 (RN) and Dt,p

0 (RN). We deduce that there
exists a function u ∈ Ds,2

0 (RN) such that un converges weakly to u in Ds,2
0 (RN) and also in

Dt,q
0 (RN). Then

‖u‖2
s,2 ≤ lim inf

n→∞
‖un‖2

s,2 .

By Lemma 1 we deduce that

λ
∫

RN
V(x)un(x)2 dx → λ

∫
RN

V(x)u(x)2 dx as n→ ∞.

Using the above pieces of information we obtain

Jλ(u) =
(

1
2
− 1

p

)(
‖u‖2

s,2 − λ
∫

RN
V(x)u2 dx

)
≤
(

1
2
− 1

p

)
lim inf

n→∞

(
‖un‖2

s,2 − λ
∫

RN
V(x)u2

n dx
)

= lim inf
n→∞

Jλ(un) = mλ < 0. (4.6)

By the above calculus we deduce that

‖u‖2
s,2 < λ

∫
RN

V(x)u2 dx,

which implies that certainly u 6≡ 0. Since un ∈ Nλ for every n, we have

‖un‖2
s,2 + ‖un‖p

t,p = λ
∫

RN
V(x)u2

n dx.

Passing to the limit as n → ∞ in the above relation and by weakly convergence of un to u in
Ds,2

0 (RN) and Dt,p
0 (RN) and also by Lemma 2.1, we get

‖u‖2
s,2 + ‖u‖

p
t,p ≤ λ

∫
RN

V(x)u(x)2 dx. (4.7)

In order to finish the proof, we show that the above relation is actually an equality. Assume
by contradiction that the inequality in (4.7) is strict, i.e.

‖u‖2
s,2 + ‖u‖

p
t,p < λ

∫
RN

V(x)u2 dx. (4.8)

Set

θ :=

λ
∫

RN
V(x)u2 dx− ‖u‖2

s,2

‖u‖p
t,p


1

p−2

.

Since u ∈ Nλ we have that θu ∈ Nλ. By (4.8) it is clear that θ > 1. Since p > 2 we deduce that

Jλ(θu) =
(

1
2
− 1

p

)
θ2
(
‖u‖2

s,2 − λ
∫

RN
V(x)u2 dx

)
<

(
1
2
− 1

p

)(
‖u‖2

s,2 − λ
∫

RN
V(x)u2 dx

)
= Jλ(u)

≤ lim inf
n→∞

Jλ(un) = mλ,
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a contradiction. Thus, relation (4.8) cannot hold true. Therefore, relation (4.7) holds as an
equality which implies that u ∈ Nλ. By relation (4.6) we know that Jλ(u) ≤ mλ, and thus
Jλ(u) = mλ. Thus, the proof is complete.

We are now ready to complete the proof of Proposition 4.1. Let uλ be the minimizer of Jλ

over Nλ given by Lemma 4.7, i.e.
Jλ(uλ) = mλ.

Since uλ ∈ Nλ, we have

‖uλ‖2
s,2 + ‖uλ‖

p
t,p = λ

∫
RN

V(x)u2
λ dx

and
‖uλ‖2

s,2 < λ
∫

RN
V(x)u2

λ dx.

We consider ϕ ∈ Ds,2
0 (RN) is arbitrary but fixed, and δ > 0 is sufficiently small such that for

each ε ∈ (−δ, δ) the function uλ + εϕ 6≡ 0 in RN and

‖uλ + εϕ‖2
s,2 < λ

∫
RN

V(x)|uλ + εϕ|2 dx.

Define θ : (−δ, δ)→ (0, ∞) as

θ(ε) :=

λ
∫

RN
V(x)|uλ + εϕ|2 dx− ‖uλ + εϕ‖2

s,2

‖uλ + εϕ‖p
t,p


1

p−2

.

We observe that θ(ε)(uλ + εϕ) ∈ Nλ and θ is a differentiable as a composition of some differ-
entiable functions. Since uλ ∈ Nλ we infer that θ(0) = 1. Next, let γ : (−δ, δ)→ R be given by
γ(ε) := Jλ(θ(ε)(uλ + εϕ)). Clearly, γ ∈ C1(−δ, δ) and mλ = γ(0) ≤ γ(ε), for each ε ∈ (−δ, δ).
Thus, we have

0 = γ′(0) = 〈J′(θ(0)uλ), θ′(0)uλ + θ(0)ϕ〉
= θ′(0)〈J′(uλ), uλ〉+ 〈J′(uλ), ϕ〉
= 〈J′(uλ), ϕ〉,

where the last equality holds because uλ ∈ Nλ.
Since ϕ ∈ Ds,2

0 (RN) was arbitrarily chosen we deduce that the last relation holds true
for each ϕ ∈ Ds,2

0 (RN) and thus, uλ is a nontrivial critical point of Jλ, and consequently a
nontrivial weak solution of equation (1.3). The proof of Proposition 4.1 is now complete.

Proposition 4.8. If u ∈ Nλ is the minimizer of Jλ over Nλ, given by Lemma 4.7, then |u| is also a
minimizer of Iλ over Nλ.

Proof. For each ξ ∈ Ds,2
0 (RN) and for any x, y ∈ RN we have

|ξ(y)− ξ(x)| ≥ | |ξ(y)| − |ξ(y)| |,

and
|ξ(y)− ξ(x)| > | |ξ(y)| − |ξ(y)| |, if ξ(x)ξ(y) < 0.

Using this, it follows that

‖ |ξ| ‖2
s,2 ≤ ‖ξ‖

2
s,2 and ‖ |ξ| ‖p

t,p ≤ ‖ξ‖
p
t,p ∀ξ ∈ Ds,2

0 (RN).
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By the above relation we deduce that

Jλ(|u|) ≤ Jλ(u). (4.9)

In what follows we will prove that Jλ(|u|) ≥ Jλ(u). We distinguish two cases. First, if |u| ∈ Nλ

then taking into account that p > 2 we get

Jλ(|u|) =
(

1
p
− 1

2

)
‖|u|‖p

t,p ≥
(

1
p
− 1

2

)
‖u‖p

t,p = Jλ(u).

The above estimate and relation (4.9) yield Jλ(|u|) = Jλ(u) = mλ and everything is done.
Next, let us assume that |u| /∈ Nλ. Then

‖|u|‖2
s,2 + ‖|u|‖

p
t,p < λ

∫
RN

V(x)u2 dx.

Set

θ :=

λ
∫

RN
V(x)u2 dx− ‖|u|‖2

s,2

‖|u|‖p
t,p


1

p−2

.

Since p > 2 we have that θ ∈ (1, ∞) and also θ|u| ∈ Nλ. We have that

mλ ≤ Jλ(θ|u|) =
(

1
p
− 1

2

)
‖|u|‖p

t,p θp

=

(
1
2
− 1

p

)(
‖|u|‖2

s,2 − λ
∫

RN
V(x)u2 dx

)
θ2

<

(
1
2
− 1

p

)(
‖|u|‖2

s,2 − λ
∫

RN
V(x)u2 dx

)
≤
(

1
2
− 1

p

)(
‖u‖2

s,2 − λ
∫

RN
V(x)u2 dx

)
= Jλ(u) = mλ,

which is a contradiction. Thus, |u| ∈ Nλ. It follows that |u| is also a minimizer of Jλ over Nλ.
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[8] M. Fărcăs, eanu, On an eigenvalue problem involving the fractional (s, p)-Laplacian,
Fract. Calc. Appl. Anal. 21(2018), 94–103. https://doi.org/10.1515/fca-2018-0006;
MR3776055
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[10] M. Fărcăs, eanu, M. Mihăilescu, D. Stancu-Dumitru, Perturbated fractional eigenvalue
problems, Discrete Contin. Dyn. Syst. 37(2017), 6243–6255. https://doi.org/10.3934/

dcds.2017270; MR3690302

[11] R. Ferreira, M. Pérez-Llanos, Limit problems for a fractional p-Laplacian as p → ∞,
NoDEA Nonlinear Differential Equations Appl. 23(2016), No. 14, 28 pp. https://doi.org/
10.1007/s00030-016-0368-z; MR3478965

[12] R. L. Frank, E. Lenzmann, L. Silvestre, Uniqueness of radial solutions for the fractional
Laplacian, Comm. Pure Appl. Math. 69(2016), 1671–1726. https://doi.org/10.1002/cpa.
21591; MR3530361

[13] G. Franzina, G. Palatucci, Fractional p-eigenvalues, Riv. Mat. Univ. Parma 5(2014), 315–
328. MR3307955

[14] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, MA, 1985. MR0775683

[15] E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations
49(2014), 795–826. https://doi.org/10.1007/s00526-013-0600-1; MR3148135
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