Jaroš Jaroslav: Reduction of order in the oscillation theory of half-linear differential equations. (2020)
Preview |
Teljes mű
ejqtde_2020_037.pdf Download (432kB) | Preview |
Abstract
Oscillation of solutions of even order half-linear differential equations of the form D(αn, . . . , α1)x + q(t)|x| sgn x = 0, t ≥ a > 0, (1.1) where αi , 1 ≤ i ≤ n, and β are positive constants, q is a continuous function from [a, ∞) to (0, ∞) and the differential operator D(αn, . . . , α1) is defined by D(α1)x = d dt |x| α1 sgn x and D(αi , . . . , α1)x = d dt |D(αi−1 , . . . , α1)x| αi sgn D(αi−1 , . . . , α1)x , i = 2, . . . , n, is proved in the case where α1 · · · αn = β through reduction to the problem of oscillation of solutions of some lower order differential equations associated with (1.1)
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2020 |
Number: | 37 |
ISSN: | 1417-3875 |
Uncontrolled Keywords: | Differenciálegyenlet |
Additional Information: | Bibliogr.: p. 10-11. ; összefoglalás angol nyelven |
Date Deposited: | 2020. Jun. 08. 09:07 |
Last Modified: | 2021. Oct. 20. 13:52 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/69541 |
Actions (login required)
![]() |
View Item |