Existence of weak solutions for quasilinear Schrödinger equations with a parameter

Wei Yunfeng and Chen Caisheng and Yang Hongwei and Yu Hongwang: Existence of weak solutions for quasilinear Schrödinger equations with a parameter. (2020)

[thumbnail of ejqtde_2020_041.pdf]
Preview
Teljes mű
ejqtde_2020_041.pdf

Download (506kB) | Preview

Abstract

In this paper, we study the following quasilinear Schrödinger equation of the form −∆pu + V(x)|u| p−2u − h ∆p(1 + u 2 α/2i αu 2(1 + u 2) (2−α)/2 = k(u), x ∈ R N, where p-Laplace operator ∆pu = div(|∇u| p−2∇u) (1 < p ≤ N) and α ≥ 1 is a parameter. Under some appropriate assumptions on the potential V and the nonlinear term k, using some special techniques, we establish the existence of a nontrivial solution in C 1,β loc (RN) (0 < β < 1), we also show that the solution is in L ∞(RN) and decays to zero at infinity when 1 < p < N.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2020
Number: 41
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2020.1.41
Uncontrolled Keywords: Schrödinger egyenlet, Differenciálegyenlet, Laplace-operátor
Additional Information: Bibliogr.: p. 18-20. ; összefoglalás angol nyelven
Date Deposited: 2020. Dec. 01. 08:45
Last Modified: 2021. Oct. 20. 13:52
URI: http://acta.bibl.u-szeged.hu/id/eprint/70154

Actions (login required)

View Item View Item