Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials

Shang Tingting and Liang Ruixi: Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials. (2020)

[thumbnail of ejqtde_2020_050.pdf]
Preview
Teljes mű
ejqtde_2020_050.pdf

Download (464kB) | Preview

Abstract

In this article, we study the following quasilinear Schrödinger equation −∆u − µ u |x| 2 + V(x)u − (∆(u 2 ))u = f(x, u), x ∈ R N, where V(x) is a given positive potential and the nonlinearity f(x, u) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinitely many nontrivial solutions by a change of variable and Symmetric Mountain Pass Theorem.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2020
Number: 50
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2020.1.50
Uncontrolled Keywords: Schrödinger egyenlet, Differenciálegyenlet
Additional Information: Bibliogr.: p. 15-18. ; összefoglalás angol nyelven
Date Deposited: 2020. Dec. 01. 10:38
Last Modified: 2021. Oct. 20. 13:52
URI: http://acta.bibl.u-szeged.hu/id/eprint/70163

Actions (login required)

View Item View Item