Shang Tingting and Liang Ruixi: Infinitely many solutions for a quasilinear Schrödinger equation with Hardy potentials. (2020)
Preview |
Teljes mű
ejqtde_2020_050.pdf Download (464kB) | Preview |
Abstract
In this article, we study the following quasilinear Schrödinger equation −∆u − µ u |x| 2 + V(x)u − (∆(u 2 ))u = f(x, u), x ∈ R N, where V(x) is a given positive potential and the nonlinearity f(x, u) is allowed to be sign-changing. Under some suitable assumptions, we obtain the existence of infinitely many nontrivial solutions by a change of variable and Symmetric Mountain Pass Theorem.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2020 |
Number: | 50 |
ISSN: | 1417-3875 |
DOI: | 10.14232/ejqtde.2020.1.50 |
Uncontrolled Keywords: | Schrödinger egyenlet, Differenciálegyenlet |
Additional Information: | Bibliogr.: p. 15-18. ; összefoglalás angol nyelven |
Date Deposited: | 2020. Dec. 01. 10:38 |
Last Modified: | 2021. Oct. 20. 13:52 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/70163 |
Actions (login required)
View Item |