Author: Tamás Héger (Budapest)
Coauthor: Marcella Takáts
Title: Semi-resolving sets for $\mathrm{PG}(2, q)$

Summary:

Let $G=(A, B ; E)$ be a bipartite graph. A subset $S=\left\{s_{1}, \ldots, s_{k}\right\} \subset A$ is a semi-resolving set for G, if the ordered distance lists $\left(d\left(b, s_{1}\right), \ldots, d\left(b, s_{k}\right)\right)$ are different for all $b \in B$.

In the talk we consider semi-resolving sets for the incidence graphs of Desarguesian projective planes. In this setting, a semi-resolving set is a point-set \mathcal{S} such that every line has a unique intersection with \mathcal{S}. Let $\mu_{S}(\mathrm{PG}(2, q))$ denote the size of the smallest semi-resolving set in $\operatorname{PG}(2, q)$, and let $\tau_{2}(q)$ be the size of the smallest double blocking set in $\operatorname{PG}(2, q)$.
We show that $\mu_{S}(\mathrm{PG}(2, q)) \leq \tau_{2}(q)-1$, and if there is a double blocking set of size $\tau_{2}(q)$ that is the union of two disjoint blocking sets (e.g., if $q \geq 9$ is a square), then $\mu_{S}(\mathrm{PG}(2, q)) \leq \tau_{2}(q)-2$. In the talk we prove the following.

Theorem. Let \mathcal{S} be a semi-resolving set for $\mathrm{PG}(2, q), q \geq 4$. If $|\mathcal{S}|<$ $9 q / 4-3$, then one can add at most two points to \mathcal{S} to obtain a double blocking set; thus $|\mathcal{S}| \geq \tau_{2}(q)-2$.

As a corollary we obtain a lower bound on the size of a blocking semioval. In the proof we use Rédei polynomials and the Szőnyi-Weiner Lemma.

