Author: Tamás Héger (Budapest)

Coauthor: Marcella Takáts

Title: Semi-resolving sets for PG(2, q)

Summary:

Let G = (A, B; E) be a bipartite graph. A subset $S = \{s_1, \ldots, s_k\} \subset A$ is a *semi-resolving set for* G, if the ordered distance lists $(d(b, s_1), \ldots, d(b, s_k))$ are different for all $b \in B$.

In the talk we consider semi-resolving sets for the incidence graphs of Desarguesian projective planes. In this setting, a semi-resolving set is a point-set S such that every line has a unique intersection with S. Let $\mu_S(PG(2,q))$ denote the size of the smallest semi-resolving set in PG(2,q), and let $\tau_2(q)$ be the size of the smallest double blocking set in PG(2,q).

We show that $\mu_S(\operatorname{PG}(2,q)) \leq \tau_2(q) - 1$, and if there is a double blocking set of size $\tau_2(q)$ that is the union of two disjoint blocking sets (e.g., if $q \geq 9$ is a square), then $\mu_S(\operatorname{PG}(2,q)) \leq \tau_2(q) - 2$. In the talk we prove the following.

Theorem. Let S be a semi-resolving set for PG(2,q), $q \ge 4$. If |S| < 9q/4-3, then one can add at most two points to S to obtain a double blocking set; thus $|S| \ge \tau_2(q) - 2$.

As a corollary we obtain a lower bound on the size of a blocking semioval. In the proof we use Rédei polynomials and the Szőnyi–Weiner Lemma.