Author: Francesco Mazzocca (Napoli)
Coauthors: A. Blokhuis, G. Marino
Title: Generalized Hyperfocused Arcs in $P G(2, p)$

Summary:

Let $P G(2, q)$ be the projective plane over F_{q}, the finite field with q elements. A k-arc in $P G(2, q)$ is a set of k points with no 3 on a line. A line containing 1 or 2 points of a k-arc is said to be a tangent or secant to the k-arc, respectively.

A blocking set of a family of lines \mathcal{F} is a point-set $\mathcal{B} \subset P G(2, q)$ having nonempty intersection with each line in \mathcal{F}. If this is the case, we also say that the lines in \mathcal{F} are blocked by \mathcal{B}.

A generalized hyperfocused arc \mathcal{H} in $P G(2, q)$ is a k-arc with the property that the $k(k-1) / 2$ secants can be blocked by a set \mathcal{B} of $k-1$ points not belonging to the arc. Points of the arc \mathcal{H} will be called white points and points of the blocking set \mathcal{B} black. In case $k>1$, since every secant to the arc contains a unique black point, the $k-1$ black points induce a factorization, i.e. a partition into matchings, of the white k-arc and k is forced to be even. For $k=2$, we only have a trivial example: \mathcal{B} consists of a unique point out of \mathcal{H} on the line through the two points of \mathcal{H}.

An non trivial example of generalized hyperfocused arc is any 4-arc of white points with its three black diagonal points and our main result is that this is the only non trivial example, provided q is an odd prime.
For q even, there are many examples with all black points on a line; in this case \mathcal{H} is simply called a hyperfocused arc. As a consequence of the main result of [3], hyperfocused arcs only exist if q is even. When q is even, a nice result is that generalized hyperfocused arcs contained in a conic are hyperfocused [1]; moreover it is known that there exist examples of generalized hyperfocused arcs which are not hyperfocused [6]. However, although much more is known about hyperfocused arcs, there are still many open problems concerning them $[1,5,6]$.
The study of these arcs is motivated by a relevant application to cryptography in connection with constructions of efficient secret sharing schemes $[7,8]$. Interestingly, our problem is also related to the (strong) cylinder conjecture [2].

References:

[1] Aguglia A., Korchmáros G., \& Siciliano A.: Minimal covering of all chords of a conic in $P G(2, q), q$ even, Bulletin of the Belgian Mathematical Society - Simon Stevin, Vol. 12 No. 5 (2006), pp.651-655.
[2] Ball S.: The polynomial method in Galois geometries, in Current research topics in Galois geometry, Chapter 5, Nova Sci. Publ., New York, (2012) 105-130.
[3] Bichara A. \& Korchmáros G.: Note on $(q+2)-$ sets in a Galois plane of order q. Combinatorial and Geometric Structures and Their Applications (Trento, 1980). Annals of Discrete Mathematics, Vol. 14 (1982), pp.117121. North-Holland, Amsterdam.
[4] Blokhuis A., Korchmáros G. \& Mazzocca F.: On the structure of 3-nets embedded in a projective plane, Journal of Combinatorial Theory, Series A; 0097-3165; ; Vol. 118 (2011); pp. 1228-1238.
[5] Cherowitzo W.E. \& Holder L.D.: Hyperfocused Arcs, Bulletin of the Belgian Mathematical Society - Simon Stevin, Vol. 12 No. 5 (2005), pp. 685696.
[6] Giulietti M. \& Montanucci E.: On hyperfocused arcs in $\operatorname{PG}(2, q)$, Discr. Math., Vol. 306 No. 24 (2006), pp. 3307-3314.
[7] Holder L.D.: The construction of Geometric Threshold Schemes with Projective Geometry, Master's Thesis, University of Colorado at Denver, 1997.
[8] Simmons G.: Sharply Focused Sets of Lines on a Conic in PG(2,q), Congr. Numer., Vol. 73 (1990), pp. 181-204.

