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Summary:

Let PG(2, q) be the projective plane over Fq, the finite field with q elements.
A k−arc in PG(2, q) is a set of k points with no 3 on a line. A line containing
1 or 2 points of a k−arc is said to be a tangent or secant to the k−arc,
respectively.

A blocking set of a family of lines F is a point-set B ⊂ PG(2, q) having non-
empty intersection with each line in F . If this is the case, we also say that
the lines in F are blocked by B.
A generalized hyperfocused arcH in PG(2, q) is a k-arc with the property that
the k(k−1)/2 secants can be blocked by a set B of k−1 points not belonging
to the arc. Points of the arc H will be called white points and points of the
blocking set B black. In case k > 1, since every secant to the arc contains
a unique black point, the k − 1 black points induce a factorization, i.e. a
partition into matchings, of the white k-arc and k is forced to be even. For
k = 2, we only have a trivial example: B consists of a unique point out of H
on the line through the two points of H.
An non trivial example of generalized hyperfocused arc is any 4-arc of white
points with its three black diagonal points and our main result is that
this is the only non trivial example, provided q is an odd prime.

For q even, there are many examples with all black points on a line; in this
case H is simply called a hyperfocused arc. As a consequence of the main
result of [3], hyperfocused arcs only exist if q is even. When q is even, a nice
result is that generalized hyperfocused arcs contained in a conic are hyper-
focused [1]; moreover it is known that there exist examples of generalized
hyperfocused arcs which are not hyperfocused [6]. However, although much
more is known about hyperfocused arcs, there are still many open problems
concerning them [1, 5, 6].

The study of these arcs is motivated by a relevant application to cryptography
in connection with constructions of efficient secret sharing schemes [7, 8].
Interestingly, our problem is also related to the (strong) cylinder conjecture
[2].
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