Author: Gábor P. Nagy (Szeged)

Coauthors: G. Korchmáros, N. Pace

Title: Projective realization of finite groups

Summary:

Let G be a (finite) group and \mathcal{P} the set of points of a projective plane over the field K. Assume that $\operatorname{char}(K) > |G|$. We say that the disjoint subsets $\Lambda_1, \Lambda_2, \Lambda_3$ of \mathcal{P} realize G if there are bijections $\alpha_i : G \to \Lambda_i$ such that for all $g_1, g_2, g_3 \in G$, the points $\alpha_1(g_1), \alpha_2(g_2), \alpha_3(g_3)$ are collinear if and only if $g_1g_2 = g_3$. The triple $(\Lambda_1, \Lambda_2, \Lambda_3)$ is said to form a dual 3-net with fibers Λ_i .

We describe some constructions: triangular, conic-line type, algebraic, and tetrahedron type. All but the last one are contained in a (possible reducible) cubic curve. The main result is the following.

Theorem (Korchmáros, Nagy, Pace 2012). Let $(\Lambda_1, \Lambda_2, \Lambda_3)$ be a dual 3-net of order $n \ge 4$ in the projective plane PG(2, K) which realizes a group G. Then one of the following holds.

- (I) G is either cyclic or the direct product of two cyclic groups, and $(\Lambda_1, \Lambda_2, \Lambda_3)$ is algebraic.
- (II) G is dihedral and $(\Lambda_1, \Lambda_2, \Lambda_3)$ is of tetrahedron type.
- (III) G is the quaternion group of order 8.
- (IV) G has order 12 and is isomorphic to Alt_4 .
- (V) G has order 24 and is isomorphic to Sym_4 .
- (VI) G has order 60 and is isomorphic to Alt_5 .

Computer calculations show that Alt_4 has no projective realization. This implies that the cases (IV)-(VI) cannot actually occur.

In my talk I focus on one important aspect of the proof, namely, on the situation when the two dual 3-nets of algebraic type share a fiber.