Author: Vito Napolitano (Napoli)
Title: k-sets of $\mathrm{P} G(3, q)$ with two intersection numbers with respect to planes

Summary:

Let \mathcal{K} be a set of points of $\mathbb{P}=\mathrm{P} G(d, q), d \geq 2, \quad \mathcal{P}_{h}$ be the family of all h-dimensional subspaces of \mathbb{P} and let $0 \leq m_{1}<\cdot<m_{s}$ be an increasing finite series of non negative integers. A k-subset \mathcal{K} of \mathbb{P} is of type $\left(m_{1}, \ldots, m_{s}\right)_{h}$ if:
(i) $|\mathcal{K} \cap \pi| \in\left\{m_{1}, \ldots, m_{s}\right\}$ for every subspace $\pi \in \mathcal{P}_{h}$,
(ii) For every $m_{j}, j=1, \ldots, s$ there is at least one subspace $\pi \in \mathcal{P}_{h}$ such that $|\mathcal{K} \cap \pi|=m_{j}$.

In the talk, k-sets of $\mathrm{P} G(3, q)$ with two intersection number, say m and n, with respect to planes will be considered.

A lower bound for the size of such sets for $m \leq q+1$ and some characterizations in the minimal size case will be showed. Also, sets of type $(3, n)_{2}$ will be studied. Finally a characterization of a non singular Hermitian variety of $\mathrm{P} G\left(3, q^{2}\right)$ via its intersection numbers with respect to lines and planes will be presented.

