Author: Vito Napolitano (Napoli)

Title: k-sets of PG(3,q) with two intersection numbers with respect to planes

Summary:

Let \mathcal{K} be a set of points of $\mathbb{P} = \mathrm{P}G(d,q), d \geq 2$, \mathcal{P}_h be the family of all *h*-dimensional subspaces of \mathbb{P} and let $0 \leq m_1 < \cdot < m_s$ be an increasing finite series of non negative integers. A *k*-subset \mathcal{K} of \mathbb{P} is of $type (m_1, \ldots, m_s)_h$ if:

- (i) $|\mathcal{K} \cap \pi| \in \{m_1, \ldots, m_s\}$ for every subspace $\pi \in \mathcal{P}_h$,
- (ii) For every m_j , j = 1, ..., s there is at least one subspace $\pi \in \mathcal{P}_h$ such that $|\mathcal{K} \cap \pi| = m_j$.

In the talk, k-sets of PG(3,q) with two intersection number, say m and n, with respect to planes will be considered.

A lower bound for the size of such sets for $m \leq q+1$ and some characterizations in the minimal size case will be showed. Also, sets of type $(3, n)_2$ will be studied. Finally a characterization of a non singular Hermitian variety of $PG(3, q^2)$ via its intersection numbers with respect to lines and planes will be presented.