Author: Marcella Takáts (Budapest)

Coauthor: Tamás Héger

Title: Resolving sets in finite projective planes

Summary:

In a graph $\Gamma = (V, E)$ a vertex v is resolved by a vertex-set $S = \{v_1, \ldots, v_n\}$ if its (ordered) distance list with respect to S, $(d(v, v_1), \ldots, d(v, v_n))$, is unique. A set $A \subset V$ is resolved by S if all its elements are resolved by S. S is a resolving set in Γ if it resolves V. The metric dimension of Γ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.

We examine resolving sets of the incidence graphs of finite projective planes. The following theorem holds:

Theorem. The metric dimension of any projective plane of order $q \ge 23$ is 4q - 4.

In the talk we sketch the proof of the above theorem and describe all resolving sets of that size.