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1. INTRODUCTION 

 
Plasma-chemical approach is used for synthesis of various gaseous, liquid, and solid 

substances since 1960th [Vurzel 1970]. Nowadays, the method of plasma enhanced 

chemical vapor deposition (PECVD) is widely used for production of thin films, 

protective coatings, carbon-based nanostructures, high purity isotopic materials, 

biomaterials, and many other products. Plasma for PECVD is typically created in various 

electrical discharges; e.g. DC and AC glow discharges or discharges operated at audio 

(10-20 kHz), radio (13.56 MHz), and microwave (2.45 GHz) frequencies. Laser induced 

plasma (LIP) is rarely used to deposit materials from the gas phase and this work aims 

at reviving interest to this latter technology and showing its potential. 

We run two pilot LIP experiments in reactive gas mixtures. First, LIP is excited in 

BCl3 or BF3 plus H2 or CH4 to evaluate the efficiency of deposition of solid boron and 

boron carbide, materials that are largely used for refractory coatings. Second, we 

investigate a possibility of synthesis of fluorochlorosilanes SiFxCl4-x (x = 1, 2, 3) by LIP 

induced in SiF4+SiCl4 gas mixtures. Using fluorochlorosilanes with different 

combinations of F and Cl in the SiFxCly molecule may add flexibility in processes of 

silicon deposition and etching. The gases used and solid deposits are analyzed by optical 

emission spectroscopy (OES) and IR and mass spectrometry (MS). We also model the 

laser induced plasma by performing static equilibrium chemistry calculations to see 

whether desired reaction products are thermodynamically favorable and dynamic 

calculations of the expanding plasma plume to see how and where the products form.  

 

 

2. EXPERIMENTAL 
 

A sketch of the experimental set-up is shown in Figure 1. A Nd:YAG laser (1064 nm, 15 

ns pulse width, 800 mJ pulse energy, 5 Hz repetition rate) is focused inside a reactor to 

create a plasma in the reactive gas mixture. The reactor consists of two coaxial quartz 

cylinders; it is loaded with gases shown in Table 1. 
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Figure 1. Experimental setup for PECVD with LIP and corresponding diagnostics. 

 

The plasma is analyzed by OES while the gas mixture inside the reactor is analyzed 

by IR and MS both before and after the laser action. Solid residues that are deposited on 

the walls of the inner cylinder are studied by the reflectance FTIR. 

 
BCl3  BF3 SiCl4 

Н2: BCl3=10:1  Н2: BF3=3:1 SiF4 

H2: Ar: BCl3=10:10:1  H2: Ar: BF3=3:4:1 SiCl4: SiF4=1:2.65 

H2: BCl3: CH4=9:1.5:1  H2: BF3: CH4=9:1.5:1 SiCl4: SiF4=2.65:1 

Table 1. Gases used in LIP experiments. 

 

A numerical experiment on the gas mixtures was performed by first calculating the 

plasma equilibrium composition as a function of its temperature using open source 

software [CEARUN] and second, calculating plasma dynamic parameters using a 

hydrodynamic code [Shabanov 2018] and the same open source software embedded in 

this code.  

 

 

3. RESULTS AND DISCUSSION 

 
3.1. Halides of boron 

 

The amount of the deposit enough for further analysis is collected with mixture 

BCl3+Н2+СН4. The deposit is identified as boron carbide and carbon (soot) by the 

reflectance FTIR technique. No deposit except soot (in methane) is observed for 

mixtures with BF3. The OES spectra of gas plasma show efficient formation of BH, BX 

(X=Cl, F), and C2 (in methane). The IR spectra of the reaction products after the laser 

action show the presence of the molecules already identified by OES plus precursors 
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(BCl3, BF3, CH4), radicals (HBCl2), and new derivatives (C2H2, B2H6). MS analysis confirms 

the presence of these molecules.  

The results of experiment well agree with the predictions of both static and 

dynamic simulations. The model does not predict formation of solid boron or boron 

carbide from mixtures of BF3 with hydrogen or methane, and same is observed in 

experiment. For mixtures of BCl3 with the same gases, condensed phases of B, C, and B4C 

form that is detected in experiment and predicted by the model. Some results of 

laboratory and numerical experiments are reproduced in Figure 2. 

 

 
Figure 2. Left panel: IR absorption spectrum of solid deposit from the mixture H2:BCl3:CH4=9:1.5:1. Right 

panel: dynamic 1D simulation of breakdown in 50% (CH4+Ar) + 50% (BCl3+H2) gas mixture; snapshot of 

species concentrations at 1 μs of the plasma plume propagation time. 

 

3.2. Halides of silicon 

 

Generation of fluorochlorosilanes in the mixture of SiF4 and SiCl4 via the reactions 3SiF4 

+ SiCl4 = 4 SiF3Cl (1160 kJ/mole); SiF4 + SiCl4 = 2SiF2Cl2 (307 kJ/mole); and SiF4 + 3SiCl4 

= 4SiFCl3 (71 kJ/mole) is thermodynamically unfavorable due to the positive Gibbs 

formation energy ΔG298 (in parentheses). These reaction products can easily be obtained 

in LIP after the plasma cools down and formerly dissociated atoms reassemble back into 

molecules. This is confirmed both experimentally and theoretically. As before, the 

plasma is analyzed by OES why the reactants and products by IR and MS. Optical 

emission spectra show the formation of SiCl, SiF, and SiCl2 along with all expected 

elemental species and their ions. The IR spectra of plasma products reveal strong 

absorption bands and, hence, efficient formation of sought-after fluorochlorosilanes 

SiF2Cl, SiFCl2, SiFCl3, SiF3Cl, and SiF2Cl2 (Figure 3., left panel); the MS measurements 

convincingly confirm this finding. From IR absorption measurements, a 60% maximum 

yield of fluorochlorosilanes is estimated for the mixture SiF4:SiCl4=1:1; the dominant 

specie is SiF2Cl2. The same high yield for SiF2Cl2 is predicted theoretically based on data 

generated by ab initio calculations of thermodynamic properties of fluorochlorosilanes. 

The result of the dynamic simulation for the mixture SiF4:SiCl4=1:1is exemplarily given 

in Figure 3., right panel.  
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Figure 3. Left panel: IR absorption spectra of mixture SiCl4:SiF4=1:1 before (black) and after (red) the 40 

min laser irradiation. Right panel: dynamic 1D simulation of breakdown in SiF4: SiCl4 = 1:1 gas mixture; 

snapshots of the plasma composition after the 5.0μs propagation time. 

 

 

4. CONCLUSIONS 

 

For the BX3-containing systems (X=Cl, F), the creation of solid deposits of B, BH3, and C 

(in mixtures with methane) is observed by LIP excited in the reactive gas mixtures 

BX3+H2 and BX3+H2+CH4. The dynamic calculations of the expanding plasma plume 

predict coexisting condensed phases of boron, boron carbide, and graphite in mixtures 

with BCl3. The maximum concentration of the condensed species is reached in 

peripheral plasma zones. Overall, the calculations and experimental results imply that 

PECVD-LIP can be a promising technique for efficient conversion of gaseous precursors 

into solid elemental constituents and their compounds. 

For the SiX4-containing systems (X=Cl, F), gaseous fluorochlorosilanes SiF3Cl, 

SiF2Cl2, SiFCl3 can efficiently be synthesized by LIP induced in SiF4+SiCl4 precursor gas 

mixtures. It is found that the total yield of fluorochlorosilanes in LIDB plasma comprises 

60%, with ~30% of SiF2Cl2. The equilibrium chemical model adequately predicts the 

composition of LIP. The dynamic calculations of the expanding plasma plume also agree 

with experiment and show that fluorochlorosilanes form in peripheral plasma zone and 

show high sensitivity toward the mixture stoichiometry and plasma temperature.  
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