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1. Introduction

An interesting class of solutions to the Maxwell equations in the paraxial approximation are light
beams with a specific amplitude distribution along their cross section in the form of a modulated
Gaussian together with a twisted phase like ei`ϕ, when going around a circle perpendicular to the
direction of propagation. These beams can be shown to carry an angular momentum ~` per photon,
where ` can be any integer (positive negative or zero) [1-3]. This orbital angular momentum (OAM) is
diffrent from photon spin denoted usually by σ due to possible circular polarization which is restricted
to be ±1 or 0.

In this contribution we present results of calculations of the spatial structure of high harmonic
radiation generated from a thin gas jet of Ne atoms excited by a strong multicycle near-infrared pulse,
carrying a low value of nonzero orbital angular momentum. The responses of the individual atoms are
calculated with the 3D time dependent Schrödinger equation (TDSE), resulting in a local secondary
field essentially within the sample. The amplitudes and phases of the harmonics in the far-field, i.e.
on the surface of a detector have been obtained by the Fraunhofer diffraction integral. The interesting
effect is that the process of harmonic generation multiplies the ` of the excitation, i.e. the OAM of the
q-th harmonic will be q` .

2. The mathematical formalism

Let us first recall the mathematical form of a Laguerre-Gaussian mode (LG), which has a focus at
z = 0:

u`p(ρ, ϕ, z) = G(ρ, z)×
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where G(ρ, z) is an ordinary Gaussian beam including the propagation phase factor ei(k0z−ωt). The
beam waist w0, the beam size w(z) = w0

√
1 + z2/z2R, the Rayleigh length zR = k0w

2
0/2 and

the phase front radius R(z) = (1 + z2R/z
2) are identical with those of the Gaussian G(ρ, z). There

are two important differences, however. The radial amplitude distribution is modulated by the L|`|p
function, which is an associated Laguerre polynomial providing characteristic ring like distribution in
the amplitude where the number of rings is p+ 1 for ` > 0. Additionally, there is also a characteristic
twisted phase as shown by the factor ei`ϕ introducing a deviation from cylindrical symmetry in the
amplitude, while the intensity still shows that symmetry.

Now we shall give the expression of a propagating pulse in a LG mode amplitude and phase
profile. The Eq. (1) above is valid for a monochromatic carrier wave. For a pulse with a Gaussian
envelope in time we shall simply take it with a delayed temporal argument t − z/c and multiply it
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with the LG mode, giving the expression
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where F is the maximal field strength and τ is the temporal FWHM of the pulse. Accordingly, the
exciting pulse arrives at the different locations of the sample delayed or faster, as determined by the
ratio z/c, and it has phase of a space dependent carrier envelope phase (CEP) as determined by the
argument

(
arg
(
u`p(r)

)
+ k0z

)
of the LG mode. Propagation effects beyond this approximation will

be neglected, we assume that the form of the pulse will not be distorted when passing through the
sample.

Radiation of a single atom
The reponse of the sample will be built up as the appropriate superposition of the multitude of the

individual atoms, and the latter will be calculated from a quantum mechanical model. A frequently
used simplification for that is the strong field approximation (SFA), as introduced by Lewenstein and
coworkers [4]. It yields an approximate analytic formula for the atomic dipole moment and using
further approximations (saddle point method etc.) plus with a field a Coulomb correction it provides
the near-field of the radiated pattern.

In this work we go beyond this SFA model, we calculate the atomic dipole moment and its accel-
eration (a(t1)) by the numerical solution of the following 3D TDSE written in atomic units:
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where the laser field E(t1) is taken to be linearly polarized in the z1 direction, and the interaction
is in the dipole form with the single-active-electron approximation (SAE). The outermost electron
is assumed to be bound by a Coulomb potential, where the specific value we use for the effective
nuclear charge: Z∗ = 1.25929 ensures that the ground state of this electron is equal to the first
ionization energy of a Ne atom.

We solve (3) by our numerical method as described in [5], and we calculate the dipole acceleration
as the quantum mechanical expectation value of the mean force acting on the electron according to
the Ehrenfest theorem. This consists of the gradient of the atomic Coulomb potential figuring in Eq.
(3) plus the effect of the external field. A macroscopic sample would require this procedure in a
great number of times, using each time the exciting field at the specific location of an atom. In the
expectation value the dominant part is determined by the wave function values close to the nucleus,
therefore we restrict the the solutions Ψ(t1) to a box of size±100 a.u around the center. On its border
we use a complex imaginary potential (denoted by VIm(ρ1, z1)) in order to absorb the wave packets
flowing out from the box.

The near-field within the sample
Now we shall consider the atomic sample as a continuous medium. The dipole acceleration a(r,t1)

due to the excitation E`,p(r, t) can be considered to be identical for a set of atoms within a volume
element dV (r) around the spatial point r in the medium, as the distance between neighbouring atoms
is much smaller than the characteristic length of essential changes of the exciting laser field. The field
amplitude generated by the accelerated dipoles at a given frequency will be proportional to ã(r, ω),
the temporal Fourier transform of a(r,t1). Accordingly, the near-field within the sample shall be
given by A(near)(r, ω) ∝ ã(r, ω). In practice, this calculation is to be performed for a great number of
discrete spatial points in the sample.

The procedure above is rather rigid and demanding, as the pulse shape of the excitation E`,p(r, t)
is strictly determined in each spatial point. Therefore we have developed an efficient interpolation
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procedure to handle the problem. As we are assuming that the exciting pulse is not changed within
the sufficiently thin sample, the single atom response does not depend on the spatial distribution of
the atoms, therefore the spatial dependence of the excitation can be replaced by its dependence on
local the peak amplitudes F, the CEP-s and on time E`,p(r, t) ∼ E(F,CEP; t). We calculate the
single atom responses to this field strength and after the interpolation process that we perform in a
way corresponding to cylindrical coordinates, we obtain a discrete spatial distribution of the near-field
amplitudes, as shown in the following scheme.

E(Fi,CEPj; t) −→
single-atom
calculations

ã(Fi,CEPj;ω) ∝ A(near)(Fi,CEPj;ω) −→
interpolation

A(near)(ρ, ϕ, z;ω). (4)

We have used a fourth order Lagrange interpolation exploiting also the 2π periodicity of the CEPj

variable.
The great advantage of this procedure is that after calculating ã(Fi,CEPj;ω) for a given temporal

shape of the excitation in a sufficienty detailed manner with respect to its discrete variables, we have
at hand their values for any LG beam with the same carrier frequency.

Determination of the far-field at the surface of the detector
In order to determine the radiation field that arrives to the detector, the near-field originating in the

sample must be propagated until the detector. As our sample is thin with respect to the wavelength,
we may assume that each harmonic with wave number kq = qk0 propagates with the speed of light.
We also assume that the detector, as well as the sample is placed along the z axis in a large distance
compared to the size of the sample. We calculate the observed far-field with the following Fraunhofer
diffraction integral over the sample volume:

A(far)
q (β, ϕ) =

1
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kq
2πi

1

r
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i

kqr

)
eikqr cos β

∫∫∫
A(near)

q (ρ′, ϕ′, z′)ρ′×

exp{ikq (1− cos β) z′ − ikqρ′ sin β cos (ϕ− ϕ′)}dρ′dϕ′dz′. (5)

The variables ρ′ ϕ′ z′ are the coordinates of the near-field in the sample, while r is the distance of
the detector from the center of the sample, ϕ is the polar angle of the far-field coordinate and β is
the diffraction angle. We have also introduced the notation A(near)

q (ρ′, ϕ′, z′) = A(near)(ρ′, ϕ′, z′; qω0).
Note that the integration extends to the z′ variable, too, and in order to correct for the dimension
the left hand side, it is divided by the width of the sample ∆Z ′ = z′max − z′min. The term eikqz

′ in
the integrand takes into account the difference between the phases of the secondary waves within the
sample.

This integral formula makes it possible to consider separately the propagation of the different
harmonics originating at least in a thin sample. (In practice the resulting field may contain noninteger
q-s, so one has to perform the sampling with respect to q values.)

3. Results

Following the outline of the previous section, we performed the single-atom, the near-field and far-
field calculations with the following configuration: we employed the u10 LG beam with ` = 1 orbital
angular momentum and w0 =30 µm beam waist, λ =797.47 nm carrier wavelength (of period T =
110 a.u.). Its peak electric intensity was 3.509 W

cm2 (corresponding to the peak electric field strength
F =0.1 a.u.). This value was selected because it is the upper bound of the tunneling ionization regime
of the single-active-electron Ne atom. The laser pulse was a many-cycle field with Gaussian envelope
of τ = 10 fs FWHM (i.e. 413.414 a.u.). We placed the center of the Ne sample (gas-jet) at the beam
waist, and regarded it as infinitely thin. In the single-atom calculations the integration time interval
encompassed 22 field-cycles (2420 a.u.). The resolution for the interpolation: the peak intensity F
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Figure 1. The spatial profiles of the A(near)
q (ρ, ϕ, 0) (top) and the A(far)

q (β, ϕ) (bottom) complex elec-
tric amplitudes of the generated 3rd harmonic in the Ne sample and at the detector surface, respec-
tively. We plot their absolute values (on the left) and phases (on the right) separately.

was sampled 21 times, and the local CEP carrier-envelope phase 80 times, that added up to 1680
single-atom calculations. We also note that we also performed the calculations of a sample of width
50 µm, but it failed to change the far-field amplitudes in any meaningful way.

The single-atom high-order-harmonic (HHG) spectra that we got from the integration of the full
TDSE show extra detail, that the traditional SFA methods do not. These have the familiar shape
of a plateau but they have a much more complicated structure compared to the ones acquired from
traditional SFA (not shown here). They contain not only odd harmonics, which leads to overall
delicate spatial structures that are proven to be sensitive to the local laser pulse parameters and can
be different in different parts of the HHG plateau. These features have direct implications of what we
see in the macroscopic sample, however.

For the spatial profiles of the near- and far-field complex electric amplitudes, we can say the
following. In the traditional SFA calculations the absolute values of these amplitudes are smooth and
independent from the polar angle ϕ, and their phase is twisted as ` = q` for the qth harmonic. Also
their HHG spectra contain only odd harmonics.

In our results, the first few harmonics up to 7th harmonic turned out to behave similarly (the 3rd
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Figure 2. The spatial profiles of the A(near)
q (ρ, ϕ, 0) (top) and the A(far)

q (β, ϕ) (bottom) complex elec-
tric amplitudes of the generated 21th harmonic in the Ne sample and at the detector surface, respec-
tively. We plot their absolute values (on the left) and phases (on the right) separately.

harmonic is shown in Figure 1). The absolute values of the near and far-fields are nearly rotationally
symmetric rings, and we can see on the phase diagram that they are twisted 3 times, i.e they have a
dominant orbital angual momentum of `3 = 3 in this case. At this part of the HHG specra (which is
commonly called the perturbative zone) our result are completely compliant with the traditional SFA
results found in the literature. Where our method shows its merit is beyond the 7th harmonic, in the
nonperturbative plateau. There, it paints a more interesting and complicated picture. To show this,
we plotted the relevant near- and far-field of the generated 21th harmonic in Figure 2. The complex
electric amplitude show an intricate pattern here, because the generated near-field radiation seems
to be sensitive to the variations of the laser pule’s local F and CEP values. We can clearly see that
the absolute values of the electric amplitudes clearly depend on the polar angle ϕ (i.e. the local CEP
value), it also creates angular zero-crossings and waves . A consequence of this is that these structures
can create additional branches in the corresponding phase diagrams (by changing the sign of the field),
making them more complicated compared to their SFA counterparts.

In the far-field these details are smoothed out, but they can still break the expected rotational
symmetry. If we look at the β diffraction angles where the far-field intensity peaks are located,
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their values are consistent with the existing SFA calculations (about 6 mrad), however they are more
complicated. The far-field phase for the odd harmonics here actually are also consistent: in the ring
near the maximum intensity the dominant orbital angular momentum is ` = 21 for the 21th harmonic
(in the corresponding figure you can count the phase shifts manually). In places where the amplitude
vanishes or just very weak the angular phase is ill-defined.

In our full TDSE based results, the odd harmonics turned out to be very special in this regard,
compared to the even ones: the angular phase of the latter are more disorganized, with more branches,
irregularities, and no clear dominant orbital angular momentum number. Our result seems to suggest
that the generated near- and far-fields contain dominantly pulses with odd angular momenta for the
` = 1 excitation (otherwise the multiplies of it). At frequencies which are not odd multiples of the
fundamental harmonic, we saw a certain distribution of odd angular momenta (which results in an
irregular phase). This would explain why the odd harmonics are special even in the full TDSE based
calculations, and not contradict the SFA ones. This needs further investigation, however.

4. Conclusions

In this work we have computed the complex near-field and far-field electric field amplitudes of high
harmonics generated in a Ne gas sample by a strong many-cycle Gaussian laser pulse. The near-
field calculation was done by numerical integration of the 3D time-dependent Schrödinger-equation
in the dipole-approximation and in the single-active-electron approximation for the Ne atom. Many
of these single-atom computations were performed using a pulse with local values of a Laguerre-
Gaussian mode cross section, and then the spatial distribution of the near-field harmonic radiation
was calculated by interpolation, while the corresponding far-field on a detector was determined with
the Fraunhofer diffraction integral. All nonlinear propagation effects were neglected.

We found that the far-field phases of the odd harmonics were consistent with the calculations using
the Lewenstein model: in the ring near the maximum intensity the dominant orbital angular momen-
tum for the odd qth harmonic turned out to be q`, while this was not true for any other harmonic.
Because the actual spectra from the single-atom calculations were sensitive to the variations of the
local carrier-envelope phase and peak electric field strength, this created a variety of angle dependent
spatial structures in the near-field intensity, beyond approximately the 7th harmonic for the excitation
we used. We have also found that in the far-field the propagation smoothed out the intensity and the
phase profiles, and the orbital-angular-momenta could be be more clearly observed at the diffraction
angle of the far-field intensity maximum.
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