BINÁRIS IDŐBELI MULTIPLEXELÉSEN ALAPULÓ PERIODIKUS EGYFOTONFORRÁSOK OPTIMALIZÁLÁSA

Mechler Mátyás¹, Bódog Ferenc¹ és Ádám Péter^{1,2}

¹Pécsi Tudományegyetem, Természettudományi Kar, Fizikai Intézet, H-7624 Pécs, Ifjúság útja 6.

²Wigner Fizikai Kutatóközpont, Szilárdtestfizikai és Optikai Intézet, Kvantumoptika és Kvantuminformatika Osztály, H-1121 Budapest, Konkoly-Thege Miklós út 29-33.

DOI: https://doi.org/10.14232/kvantumelektronika.9.27

1. Bevezetés

A periodikus egyfotonforrások fejlesztése egy jelenleg is intenzíven kutatott témaköre a kvantumoptikának. Az említett források fejlesztését számos lehetséges alkalmazásuk indokolja, melyek közül példaként említhető az optikai kvantumszámítás [1], kvantumkulcsszétosztás [2] és különböző kvantumoptikai kísérletek [3]. Több különböző fizikai rendszerre alapozva valósítottak már meg egyfotonforrásokat, ezek közül a leggyakrabban vizsgált rendszerek a spontán parametrikus lekonverzió (SPL) folyamatára épülő, korrelált fotonpárokat adó valószínűségi források. Ezekben az egyik foton (jelző foton) detektálásával időbeli és térbeli információt szerzünk a társfotonról, amelyet így felhasználhatunk.

Az említett berendezésekben térbeli [4–7] vagy időbeli [8–11] multiplexeléssel érhető el az ideálishoz közeli működés. A multiplexelő rendszerekkel ideális esetben tökéletes periodikus egyfotonforrást kaphatnánk, azonban a multiplexelő rendszer méretével, az alkalmazott optikai elemek számával arányos veszteségek mindkét multiplexelő rendszerben lerontják a várt eredményt.

A [12] közleményünkben megadtuk a multiplexelésen alapuló periodikus egyfotonforrások statisztikai leírását, melynek segítségével több különböző multiplexelt egyfotonforrás optimalizálását végeztük el. A részletes statisztikai elemzésből kiderül, hogy mindkét multiplexelés esetében létezik optimális rendszerméret, amely mellett a berendezés a maximális egyfoton-valószínűséget adja. Javasoltunk továbbá egy bináris időbeli multiplexelésen alapuló forrást, amely az analízis szerint valós kísérleti paraméterek mellett jelenleg a legmagasabb egyfoton-valószínűséget adja. A [13] cikkünkben kiterjesztettük a leírásmódot kombinált multiplexelésen alapuló egyfotonforrásokra. Ezekben a rendszerekben egyaránt alkalmaznak térbeli, és időbeli multiplexelést. Mindkét említett publikációban küszöbdetektorokkal működtetett egyfotonforrásokat vizsgáltunk, amelyek csak a fotonok jelenlétét rögzítik. A statisztikus leírást a [14]-es közleményünkben általánosítottuk fotonszámfeloldó detektorok esetére. Ezek a detektorok nemcsak a fotonok jelenlétét, hanem a detektált fotonok számát is képesek meghatározni. A részletes statisztikai elemzést szimmetrikus térbeli multiplexelésen alapuló egyfotonforrásokra végeztük el.

Ebben a kéziratban az általunk javasolt bináris időbeli multiplexelésen alapuló egyfotonforrás optimalizálását végezzük el abban az esetben, ha fotonszámfeloldó detektorokat alkalmazunk a jelző fotonok észlelésére.

2. Bináris időbeli multiplexelés

Az 1. ábra mutatja a bináris időbeli multiplexelésen alapuló egyfotonforrás sematikus ábráját. A fotonpárok SPL forrásban keletkeznek, melyet impulzusüzemű, vagy folytonos üzemű lézerrel gerjesztünk. Az SPL forrásból kilépő *i*-vel jelölt jelző fotonok a D-vel jelölt detektorra vannak vezetve. Az *s*-el jelölt jelfotonok τ_0 késleltetés után lépnek be a multiplexerbe. A jelfotonokat a különböző τ , 2τ , 4τ ... hosszúságú késleltetőutakba az OS_n -el jelölt optikai kapcsolók vezetik be. Látható, hogy a késleltetések hossza kettő hatványai szerint növekszik, innen a bináris időbeli multiplexelés elnevezés. Az optikai kapcsolókat a C vezérlőegység konfigurálja a detektorból érkező információk alapján. Az időbeli késleltetés során egy detektált fotonon annyit késleltetünk, hogy az előre meghatározott periódusidő végére lépjen ki a rendszerből.

A [12] közleményünkben javasoltunk egy hagyományos optikai eszközökből felépíthető bináris időbeli multiplexelésen alapuló egyfotonforrást. A javasolt rendszerben a késleltetőegységek az 1. ábrán látható módon épülnek fel. Az optikai kapcsolót ebben a rendszerben a PC-vel jelölt Pockelscella, valamint a PBS-el jelölt polarizációs nyalábosztóval valósítjuk meg. A foton vertikális polarizációval érkezik a Pockels-cellához. A polarizáció megváltoztatásával vezethetjük be a fotont a késleltetőegységbe.

1. ábra. A bináris időbeli multiplexelés sematikus ábrája (balra). Hagyományos optikai elemekből felépíthető késleltetőegység (jobbra). Jelölések: PC – Pockels-cella; PBS – polarizációs nyalábosztó; SPL – spontán parametrikus lekonverzió; OS – optikai kapcsoló; D - detektor; C – vezérlőegység.

3. A multiplexelt egyfotonforrások statisztikai leírása

Tekintsünk egy térben vagy időben multiplexelt egyfotonforrást, amelyben a multiplexelt egységek száma (nemlineáris források vagy időablakok száma) N. Tegyük fel, hogy az n-edik multiplexelt egységben j fotonpár érkezik a nemlineáris forrásból, és a multiplexer bemenetein egy előre definiált l detektált fotonszám esetén léphetnek be jelfotonok. Annak a valószínűsége, hogy a beérkező j foton közül i éri el a forrás kimenetét, a következőképpen határozható meg [14]:

$$P_{i}^{(S)} = \left(1 - \sum_{l \in S} P^{(D)}(l)\right)^{N} \delta_{i,0} + \sum_{n=1}^{N} \left[\left(1 - \sum_{l \in S} P^{(D)}(l)\right)^{n-1} \times \sum_{l \in S} \sum_{j=\max(i,l)}^{\infty} P^{(D)}(l|j) P^{(\lambda)}(j) V_{n}(i|j) \right].$$
(1)

Az egyenletben $P^{(D)}(l)$ jelöli l foton detektálásának valószínűségét, $P^{(D)}(l|j)$ jelöli azt a feltételes valószínűséget, hogy a detektor l fotont észlel, feltéve, hogy j foton érkezett a felületére, $P^{(\lambda)}(j)$

pedig *j* fotonpár keletkezésének a valószínűségét jelöli. A $P^{(D)}(l)$ valószínűséget a következőképpen írhatjuk:

$$P^{(D)}(l) = \sum_{j=l}^{\infty} P^{(D)}(l|j) P^{(\lambda)}(j) = \sum_{j=l}^{\infty} {j \choose l} V_D^l (1 - V_D)^{j-l} P^{(\lambda)}(j),$$
(2)

ahol V_D a detektorhatásfok. A számításaink során a keletkező fotonpárok számát Poisson-eloszlásúnak feltételeztük. Az általános egyenletben megjelenő $V_n(i|j)$ kifejezés annak a valószínűsége, hogy *i* foton éri el az egyfotonforrás kimenetét, feltéve, hogy az *n*-edik multiplexelt egységből *j* foton érkezett, melyet az 1. ábrán bemutatott bináris időbeli multiplexelés esetén a következőképpen számíthatunk ki:

$$V_n(i|j) = \binom{j}{i} V_n^i (1 - V_n)^{j-i}, \quad \text{ahol} \quad V_n = V_b V_{\text{re}}^h V_t^{l-h} V_p^{(N-n)/N}.$$
(3)

A kifejezésben V_n az *n*-edik időablakhoz tartozó transzmisszió valószínűsége, amelyben $V_{\rm re}$ és V_t a polarizációs nyalábosztók reflexiós és transzmissziós koefficiensei, V_p a terjedéshez tartozó veszteség, amely tartalmazza a Pockels-cellán való áthaladáshoz tartozó veszteséget, V_b pedig egy általános, időablaktól független veszteségi paraméter (fotonok összegyűjtésének valószínűsége, becsatolási veszteség stb.), *h* pedig N - n Hamming-súlya.

Az általános kifejezésben az S halmaz tartalmazza azokat az előre meghatározott fotonszámokat, amelyek rögzítése esetén a jelfotonok beléphetnek a multiplexerbe. Ez a halmaz egy detektálási stratégiát határoz meg, amelyet csak fotonszámfeloldó detektorokkal lehet megvalósítani. Ebben a munkában $S = \{1, 2, 3, \ldots, J_{\text{max}}\}$ alakú detektálási stratégiákat veszünk figyelembe.

4. Eredmények

Ebben a szakaszban mutatjuk be az optimalizálás eredményeit. Az optimalizálás során elsőként rögzítjük az egyfotonforrást jellemző összes kísérleti paramétert és a detektálási stratégiát, kezdve $S = \{1\}$ -el. Ezt követően a multiplexelt időablakok számát kettő hatványai szerint növelve, minden N értékhez meghatározzuk a bemeneti fotonszám λ_{opt} optimális átlagos értékét. A multiplexelt időablakok azon száma, amelyhez a legmagasabb egyfoton-valószínűség tartozik, az lesz az N_{opt} optimális rendszerméret. Ezt követően megismételjük az optimalizálást $S = \{1, 2\}, S = \{1, 2, 3\} \dots$ detektálási stratégiákat feltételezve. A különböző detektálási stratégiák mellett meghatározott egyfoton-valószínűségek abszolút maximuma adja meg az optimális detektálási stratégiát (S_{opt}).

Az optimalizálást kísérletileg elérhető paramétertartományokon végezzük. A polarizációs nyalábosztók reflexiós együtthatóját a $0.9 \le V_{\rm re} \le 0.996$, a transzmissziós együtthatót pedig a $0.9 \le V_t \le 0.97$ tartományon vizsgáljuk. A fotonszámfeloldó detektorok hatásfokát a $0.6 \le V_d \le 0.98$ tartományon vizsgáljuk. A terjedési veszteség értékét $V_p = 0.95$ értéken rögzítjük, a V_b általános veszteségi paramétert pedig egységnek vesszük, hiszen ez a rendszer kvalitatív tulajdonságait nem változtatja meg.

Az optimalizálás eredményeit az 1. táblázat tartalmazza. A táblázatban vizsgált tartományon az optimális detektálási stratégia végig $S = \{1\}$. A táblázatból látszik, hogy növekvő V_t és V_{re} értékekhez növekvő optimális rendszerméret tartozik, ugyanakkor az optimális bemeneti fotonszám értéke csökken. Amennyiben N_{opt} értéke változatlan, az átlagos bemeneti fotonszám V_t és V_{re} növekvésével akkor is csökken, hiszen alacsonyabb veszteségek mellett a fotonok egyre kisebb valószínűséggel vesznek el a multiplexelő rendszerben. N_{opt} ugrásakor λ_{opt} -ban is nagyobb ugrás van, hiszen ekkor kétszer annyi multiplexelt időablakból érkezhetnek fotonok. Ez nem más, mint a források multiplexelésének alapelve, azaz, hogy egy multiplexelt egységben a generált fotonpárok átlagos számának csökkentésével csökkentjük több fotonpár keletkezésének a valószínűségét, miközben a multiplexelt egységek számának növelésével azt a valószínűséget csökkentjük, hogy egyáltalán ne érkezzen foton.

		$V_{D} = 0.6$			$V_D = 0.8$			$V_D = 0.9$			$V_D = 0.98$		
V_t	$V_{\rm re}$	Nopt	$P_{1,\max}^{\text{EFD}}$	λ_{opt}	Nopt	$P_{1,\max}^{\text{EFD}}$	λ_{opt}	$N_{\rm opt}$	$P_{1,\max}^{\text{EFD}}$	λ_{opt}	Nopt	$P_{1,\max}^{\text{EFD}}$	$\lambda_{\rm opt}$
0.90	0.90	16	0.587	0.490	8	0.635	0.751	8	0.660	0.818	8	0.680	0.950
	0.92	16	0.615	0.476	8	0.659	0.735	8	0.688	0.808	8	0.713	0.947
	0.94	16	0.643	0.463	8	0.683	0.719	8	0.717	0.798	8	0.746	0.944
	0.96	32	0.672	0.296	16	0.719	0.465	8	0.746	0.787	8	0.781	0.942
	0.98	32	0.714	0.290	16	0.757	0.461	16	0.785	0.551	8	0.816	0.939
	0.99	32	0.735	0.287	16	0.776	0.459	16	0.808	0.553	16	0.840	0.841
	0.996	64	0.749	0.220	32	0.791	0.344	16	0.821	0.553	16	0.856	0.843
0.92	0.90	16	0.599	0.461	8	0.645	0.725	8	0.671	0.790	8	0.693	0.936
	0.92	16	0.628	0.451	8	0.669	0.711	8	0.699	0.782	8	0.725	0.935
	0.94	16	0.656	0.440	16	0.696	0.433	8	0.729	0.774	8	0.759	0.933
	0.96	32	0.691	0.271	16	0.734	0.434	8	0.758	0.765	8	0.794	0.932
	0.98	32	0.733	0.268	16	0.772	0.433	16	0.801	0.503	8	0.830	0.929
	0.99	64	0.757	0.183	32	0.794	0.294	16	0.823	0.508	16	0.855	0.794
	0.996	64	0.774	0.184	32	0.810	0.296	16	0.837	0.510	16	0.871	0.800
0.94	0.90	16	0.612	0.436	8	0.655	0.699	8	0.682	0.760	8	0.705	0.918
	0.92	16	0.641	0.428	8	0.679	0.687	8	0.711	0.755	8	0.738	0.920
	0.94	16	0.670	0.420	16	0.711	0.404	8	0.740	0.749	8	0.772	0.920
	0.96	32	0.711	0.250	16	0.749	0.407	16	0.772	0.446	8	0.808	0.919
	0.98	64	0.754	0.155	32	0.789	0.250	16	0.817	0.460	8	0.844	0.918
	0.99	64	0.783	0.157	32	0.816	0.255	16	0.840	0.466	16	0.870	0.726
	0.996	64	0.801	0.158	32	0.832	0.258	16	0.854	0.469	16	0.886	0.738
0.96	0.90	16	0.625	0.414	8	0.665	0.674	8	0.693	0.731	8	0.717	0.896
	0.92	16	0.654	0.408	8	0.690	0.664	8	0.723	0.729	8	0.751	0.901
	0.94	32	0.689	0.233	16	0.727	0.379	8	0.752	0.725	8	0.786	0.904
	0.96	32	0.732	0.234	16	0.766	0.383	16	0.789	0.408	8	0.821	0.905
	0.98	64	0.783	0.138	32	0.811	0.223	16	0.834	0.423	16	0.859	0.591
	0.99	64	0.813	0.140	32	0.839	0.228	16	0.857	0.429	16	0.886	0.630
	0.996	128	0.833	0.089	64	0.856	0.146	32	0.875	0.265	16	0.902	0.650
0.97	0.90	16	0.632	0.403	8	0.670	0.662	8	0.699	0.717	8	0.723	0.883
	0.92	16	0.661	0.398	16	0.698	0.363	8	0.729	0.715	8	0.757	0.890
	0.94	32	0.699	0.225	16	0.735	0.368	8	0.759	0.713	8	0.792	0.895
	0.96	32	0.743	0.227	16	0.774	0.372	16	0.797	0.392	8	0.828	0.897
	0.98	64	0.798	0.132	32	0.823	0.212	16	0.843	0.406	16	0.867	0.536
	0.99	128	0.830	0.078	32	0.851	0.217	32	0.868	0.233	16	0.894	0.576
	0.996	128	0.852	0.080	64	0.871	0.130	32	0.886	0.241	16	0.910	0.599

1. táblázat. Optimalizált fotonszámfeloldó detektorokkal felszerelt bináris időbeli multiplexelésen alapuló egyfotonforrások. Az elérhető $P_{1,\max}^{\text{EFD}}$ maximális egyfoton-valószínűségeket a hozzájuk tartozó N_{opt} optimális rendszermérettel és λ_{opt} optimális átlagos bemeneti fotonszámmal tüntettük fel V_{re} reflexiós, V_t transzmissziós koefficiensek, valamint különböző V_D detektorhatásfokok mellett. Az egyfoton-detektálás (EFD) az $S = \{1\}$ detektálási stratégiát jelöli. A táblázatban $V_b = 1$ alaptranszmissziót, valamint $V_p = 0.95$ terjedési veszteséget feltételeztünk.

A detektorhatásfok növelésével ugyanakkor az optimális rendszerméret csökken, az átlagos bemenő fotonszám optimális értéke pedig növekszik. Ennek az az oka, hogy növekvő hatásfok mellett a detektorok egyre inkább képesek kiszűrni azokat a lekonverziós eseményeket, amikor egyetlen fotonpár keletkezik. Az optimális rendszerméretről eddig elmondottakat szemlélteti a 2. ábra, ahol bal oldalon rögzített $V_t = 0.97$ érték mellett ábrázoltuk $\log_2(N_{opt})$ értékét V_D és V_{re} függvényében, jobb

oldalon pedig rögzített $V_{\rm re} = 0.996$ érték mellett V_D és V_t függvényében.

2. ábra. Az időbeli multiplexerben használt szintek optimális száma ($\log_2 N_{opt}$) a V_D detektorhatásfok és a routerre jellemző V_{re} reflexiós koefficiens (balra), illetve a V_t transzmissziós koefficiens (jobbra) függvényében. Az ábrákon a terjedési veszteség értéke $V_p = 0.95$, a bal oldali ábrán a router transzmissziós koefficiense $V_t = 0.97$, a jobb oldali ábrán a router reflexiós koefficiense $V_{re} = 0.996$.

A táblázatban vizsgált tartományon az egyfoton-valószínűségek $0.587 \le P_{1,\max} \le 0.91$ között változnak. Összehasonlításképpen, $V_D = 0.98$ hatásfokú küszöbdetektor alkalmazása mellett, az elérhető legjobb kísérleti paramétereket feltételezve ($V_{\rm re} = 0.996$, $V_t = 0.97$, $V_p = 0.95$) $P_{1,\max}^{\rm KD} = 0.857$ maximális egyfoton-valószínűséget érhetnénk el $N_{\rm opt} = 128$ multiplexelt időablakkal. Ugyanezen paraméterekkel a táblázatból látható, hogy fotonszámfeloldó detektorral $P_{1,\max} = 0.91$ egyfoton-valószínűség érhető el mindössze $N_{\rm opt} = 16$ multiplexelt időablakkal.

A multiplexelt források kísérleti megvalósításának szempontjából a fotonszámfeloldó detektorok alkalmazásának tehát az az előnye, hogy képesek növelni az elérhető maximális egyfoton-valószínűséget, kisebb rendszerméret mellett. A vizsgált időbeli multiplexer esetében a kisebb rendszerméret költséghatékonyság melletti további előnye, hogy a forrás ismétlési frekvenciája is nagyobb lehet.

Ahogy korábban említettük, a táblázatban vizsgált tartomány egészén az $S = \{1\}$ az optimális

3. ábra. A $P_{1,\text{max}}$ maximális egyfoton-valószínűség a polarizációs nyalábosztó paramétereinek, azaz a V_{re} reflexiós és V_t transzmissziós koefficienseknek a függvényében. A folytonos vonal az optimális detektálási stratégiákat választja el: a vonal felett az egyfoton-detektálás, a vonal alatt a maximum két foton detektálása az optimális. Az ábrák paraméterei: a terjedési veszteséget jellemző koefficiense $V_p = 0.95$, a detektorhatásfok $V_d = 0.8$ (balra), $V_d = 0.98$ (jobbra).

detektálási stratégia. A detektálási stratégia viselkedésének megértése érdekében a 3. ábrán kiterjesztettük a V_t és $V_{\rm re}$ paraméterekben vizsgált tartományt ($0.8 \le V_t, V_{\rm re} \le 0.99$). Az ábrákon $P_{1,\rm max}$ értékét ábrázoltuk $V_{\rm re}$ és V_t függvényében különböző, rögzített V_D értékekre. Szaggatott vonallal választottuk el az $S = \{1, 2\}$, valamint $S = \{1\}$ detektálási stratégiákat. Az ábrákon látható, hogy nagyobb veszteségek esetén (szaggatott vonal alatti terület) érdemes a multiplexelő rendszerbe kettő fotont is beengedni, hiszen ekkor már egyikük az áthaladás során jó eséllyel elveszik. A legmagasabb elérhető $V_D = 0.98$ detektorhatásfokot feltételezve, a $V_{\rm re} = V_t = 0.8$ paraméterek mellett küszöbdetektorral $P_{1,\rm max}^{\rm KD} = 0.524, S = \{1\}$ detektálási stratégiával $P_{1,\rm max}^{\rm EFD} = 0.521, S = \{1,2\}$ detektálási stratégiával pedig $P_{1,\rm max}^{\rm Sopt} = 0.545$ maximális egyfoton-valószínűség érhető el. Ez azt jelenti, hogy a fotonszámfeloldó detektorok megfelelő konfigurálásával ezen a tartományon is $\Delta_P = 0.02$ egyfotonvalószínűség növekedés érhető el.

A közleményben a bináris időbeli multiplexelésen alapuló periodikus egyfotonforrások optimalizálását végeztük el fotonszámfeloldó detektorokat feltételezve. Kísérletileg elérhető paramétertartományon megmutattuk, hogy fotonszámfeloldó detektorokat alkalmazva magasabb egyfoton-valószínűség érhető el kevesebb multiplexelt egységgel, mintha a pusztán fotonok jelenlétét rögzíteni képes küszöbdetektorokat alkalmaznánk.

Köszönetnyilvánítás

A munkát az EFOP-3.6.2-16-2017-00005 számú, "Ultragyors fizikai folyamatok atomokban, molekulákban, nanoszerkezetekben és biológiai rendszerekben" című projekt és az NKFIH K124351 és 2017-1.2.1-NKP-2017-00001 HunQuTech számú projektjei támogatták.

Hivatkozások

- [1] E. Knill, R. Laflamme és G. J. Milburn, Nature **409**, 46 (2001). https://doi.org/10.1038/35051009
- [2] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres és W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895
- [3] C. C. Gerry, Phys. Rev. A 59, 4095 (1999). https://doi.org/10.1103/PhysRevA.59.4095
- [4] A. L. Migdall, D. Branning és S. Castelletto, Phys. Rev. A 66, 053805 (2002). https://doi.org/10.1103/PhysRevA.66.053805
- [5] J. H. Shapiro és F. N. Wong, Opt. Lett. 32, 2698 (2007). https://doi.org/10.1364/OL.32.002698
- [6] X. S. Ma, S. Zotter, J. Kofler, T. Jennewein és A. Zeilinger, Phys. Rev. A 83, 043814 (2011). https://doi.org/10.1103/PhysRevA.83.043814
- [7] R. J. A. Francis-Jones, R. A. Hoggarth és P. J. Mosley, Optica 3, 1270 (2016). https://doi.org/10.1364/OPTICA.3.001270
- [8] T. B. Pittman, B. C. Jacobs és J. D. Franson, Phys. Rev. A 66, 042303 (2002). https://doi.org/10.1103/PhysRevA.66.042303

IX. KVANTUMELEKTRONIKAI SZIMPÓZIUM

- [9] J. Mower és D. Englund, Phys. Rev. A. 84, 052326 (2011). https://doi.org/10.1103/PhysRevA.84.052326
- [10] R. A. Hoggarth, R. J. A. Francis-Jones és P. J. Mosley, J. Opt. 19, 125503 (2017). https://doi.org/10.1088/2040-8986/aa979e
- [11] F. Kaneda és P. G. Kwiat, Sci. Adv. 5, (2019). https://doi.org/10.1126/sciadv.aaw8586
- [12] P. Adam, M. Mechler, I. Santa és M. Koniorczyk, Phys. Rev. A 90, 053834 (2014). https://doi.org/10.1103/PhysRevA.90.053834
- [13] F. Bodog, P. Adam, M. Mechler, I. Santa és M. Koniorczyk, Phys. Rev. A 94, 033853 (2016). https://doi.org/10.1103/PhysRevA.94.033853
- [14] F. Bodog, M. Mechler, M. Koniorczyk és P. Adam, Phys. Rev. A 102, 013513 (2020). https://doi.org/10.1103/PhysRevA.102.013513