
Volume 25 Number 1

ACTA
CYBERNETICA

Editor-in-Chief: Tibor Csendes (Hungary)

Managing Editor: Boglárka G.-Tóth (Hungary)

Assistant to the Managing Editor: Attila Tanács (Hungary)

Associate Editors:

Michał Baczyński (Poland) Zoltan Kato (Hungary)
Hans L. Bodlaender (The Netherlands) Dragan Kukolj (Serbia)
Gabriela Csurka (France) László Lovász (Hungary)
János Demetrovics (Hungary) Kálmán Palágyi (Hungary)
József Dombi (Hungary) Dana Petcu (Romania)
Zoltán Fülöp (Hungary) Andreas Rauh (France)
Zoltán Gingl (Hungary) Heiko Vogler (Germany)
Tibor Gyimóthy (Hungary) Gerhard J. Woeginger (The Netherlands)

Szeged, 2021

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). There are no page charges. An electronic version of the published paper is
provided for the authors in PDF format.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements: title of the paper; author name(s) and affiliation; name,
address and email of the corresponding author; an abstract clearly stating the nature
and significance of the paper. Abstracts must not include mathematical expressions or
bibliographic references.

References should appear in a separate bibliography at the end of the paper, with
items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.).

When your paper is accepted for publication, you will be asked to upload the complete
electronic version of your manuscript. For technical reasons we can only accept files in
LaTeX format. It is advisable to prepare the manuscript following the guidelines described
in the author kit available at https://cyber.bibl.u-szeged.hu/index.php/actcybern/
about/submissions even at an early stage.

Submission and Review. Manuscripts must be submitted online using the edito-
rial management system at https://cyber.bibl.u-szeged.hu/index.php/actcybern/

submission/wizard. Each submission is peer-reviewed by at least two referees. The
length of the review process depends on many factors such as the availability of an Edi-
tor and the time it takes to locate qualified reviewers. Usually, a review process takes 6
months to be completed.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, e40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: acta@inf.u-szeged.hu

Web access. The above information along with the contents of past and current is-
sues are available at the Acta Cybernetica homepage https://www.inf.u-szeged.hu/

en/kutatas/acta-cybernetica .

EDITORIAL BOARD

Editor-in-Chief:

Tibor Csendes
Department of Computational Optimization
University of Szeged, Szeged, Hungary
csendes@inf.u-szeged.hu

Managing Editor:

Boglárka G.-Tóth
Department of Computational Optimization
University of Szeged, Szeged, Hungary
boglarka@inf.u-szeged.hu

Assistant to the Managing Editor:

Attila Tanács
Department of Image Processing
and Computer Graphics
University of Szeged, Szeged, Hungary
tanacs@inf.u-szeged.hu

Associate Editors:

Michał Baczyński
Faculty of Science and Technology
University of Silesia in Katowice
Katowice, Poland
michal.baczynski@us.edu.pl

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Gabriela Csurka
Naver Labs
Meylan, France
gabriela.csurka@naverlabs.com

János Demetrovics
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

József Dombi
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
dombi@inf.u-szeged.hu

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
fulop@inf.u-szeged.hu

Zoltán Gingl
Department of Technical Informatics
University of Szeged
Szeged, Hungary
gingl@inf.u-szeged.hu

Tibor Gyimóthy
Department of Software Engineering
University of Szeged
Szeged, Hungary
gyimothy@inf.u-szeged.hu

Zoltan Kato
Department of Image Processing
and Computer Graphics
University of Szeged
Szeged, Hungary
kato@inf.u-szeged.hu

Dragan Kukolj
RT-RK Institute of Computer Based
Systems
Novi Sad, Serbia
dragan.kukolj@rt-rk.com

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Kálmán Palágyi
Department of Image Processing
and Computer Graphics
University of Szeged
Szeged, Hungary
palagyi@inf.u-szeged.hu

Dana Petcu
Department of Computer Science
West University of Timisoara, Romania
petcu@info.uvt.ro

Andreas Rauh
ENSTA Bretagne
Brest, France
andreas.rauh@interval-methods.de

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
Heiko.Vogler@tu-dresden.de

Gerhard J. Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi@win.tue.nl

Summer Workshop on
Interval Methods

Guest Editors:

Julien Alexandre dit Sandretto

Olivier Mullier

Alexandre Chapoutot

ENSTA Paris, Institut Polytechnique de Paris, Palaiseau France
{alexandre, mullier, chapoutot}@ensta.fr

Preface

The Summer Workshop on Interval Methods (SWIM) is an annual meeting initi-
ated in 2008 by the French MEA working group on Set Computation and Interval
Techniques of the French research group on Automatic Control. A special focus of
the MEA group is on promoting interval analysis techniques and applications to a
broader community of researchers, facilitated by such multidisciplinary workshops.
Since 2008, SWIM has become a keystone event for researchers dealing with various
aspects of interval and set-based methods.

In 2019, the 12th edition in this workshop series was held at ENSTA Paris,
France, with a total of 25 talks.

Traditionally, workshops in the series of SWIM provide a platform for both
theoretical and applied researchers who work on the development, implementa-
tion, and application of interval methods, verified numerics, and other related (set-
membership) techniques. For this edition, given talks were in the fields of

• the verified solution of initial value problems for ordinary differential equa-
tions, differential-algebraic system models, and partial differential equations,

• scientific computing with guaranteed error bounds,

• the design of robust and fault-tolerant control systems,

• the implementation of corresponding software libraries, and

• the usage of the mentioned approaches for a large variety of system models in
areas such as control engineering, data analysis, signal and image processing.

Seven papers were selected for submission to this Acta Cybernetica special
issue. After a two turn peer-review process, six high-quality articles were selected
for publication in this special issue. Three papers propose a contribution regarding
differential equations, two papers focus on robust control, and one paper consider
fault detection.

Julien Alexandre dit Sandretto
Olivier Mullier
Alexandre Chapoutot

Guest Editors

3

Acta Cybernetica 25 (2021) 5–20.

Interval-based Simulation of
Zélus IVPs using DynIbex∗

Jason Browna and François Pessauxb

Abstract

Modeling continuous-time dynamical systems is a complex task. Fortu-
nately some dedicated programming languages exist to ease this work. Zélus
is one such language that generates a simulation executable which can be used
to study the behavior of the modeled system. However, such simulations can-
not handle uncertainties on some parameters of the system. This makes it
necessary to run multiple simulations to check that the system fulfills partic-
ular requirements (safety for instance) for all the values in the uncertainty
ranges. Interval-based guaranteed integration methods provide a solution to
this problem. The DynIbex library provides such methods but it requires a
manual encoding of the system in a general purpose programming language
(C++). This article presents an extension of the Zélus compiler to generate
interval-based guaranteed simulations of IVPs using DynIbex. This extension
is conservative since it does not break the existing compilation workflow.

Keywords: DynIbex, Zélus, compilation, hybrid system, interval, guaranteed
integration, simulation

1 Introduction
Hybrid systems are commonly defined as dynamical systems mixing discrete and
continuous times. They are widely present in control command systems where a
continuous physical process is controlled by software components which run at dis-
crete instants. The implementation of such software components involved in many
critical systems has to be verified to ensure that the behavior of the global system
does not lead to any critical event. One of the verification techniques is to simulate
∗This research benefited from the support of the “Chair Complex Systems Engineering - École

Polytechnique, THALES, DGA, FX, DASSAULT AVIATION, DCNS Research, ENSTA Paris-
Tech, Télécom ParisTech, Fondation ParisTech and FDO ENSTA” and it is also partially funded
by DGA AID. We warmly thank Julien Alexandre dit Sandretto, Alexandre Chapoutot and Olivier
Mullier for the many discussions we had to achieve this work.

aUniversity of Melbourne, Australia. E-mail: jason.brown@unimelb.edu.au, ORCID:
https://orcid.org/0000-0002-1235-3722.

bU2IS, ENSTA Paris, France. E-mail: francois.pessaux@ensta-paris.fr, ORCID:
https://orcid.org/0000-0002-4219-3854.

DOI: 10.14232/actacyb.285246

6 Jason Brown and François Pessaux

the global system. In such a simulation process, the continuous physical process is
modeled as differential equations whose solutions are approximated by dedicated
integration algorithms. The discrete processing is the software components. Both
parts of the system have to interact, allowing the discrete process to react to events
of the continuous one.

Simulations can be very dependent on the initial conditions of the system. Small
variations may have important impacts. Moreover, the initial conditions may not
always be accurately known. A solution to address these uncertainties is to compute
using intervals, hence to rely on interval-based integration tools [10, 14, 2, 3, 4, 17]
possibly with guaranteed arithmetic [5, 8, 13].

Domain Specific Languages and tools exist to ease the modeling, development
and verification of hybrid systems (Modelica, Simulink/Stateflow, LabVIEW,
Zélus and others [7]). These languages provide numerous advantages compared to
a manual implementation requiring to explicitly bind the code of the software com-
ponents with the runtime/library of simulation. They often propose high-level
constructs (automata, differential equations, guards) with dedicated static verifi-
cations (typechecking, initialization analysis, scheduling, causality analysis) and
compile the hybrid model to low-level code (C, C++) to produce an executable
simulation.

This work proposes to bind the flexibility of a hybrid programming language,
Zélus[6], with the safety of interval-based guaranteed integration using DynIbex[1, 9].
Zélus natively generates imperative OCaml code linked with a point-wise simulation
runtime. DynIbex is a plug-in of the C++ Ibex library, bringing various validated
numerical integration methods to solve Initial Value Problems (IVPs). We do not
address the compilation of arbitrary Zélus programs toward DynIbex. We present
instead the compilation schema for an IVP described in a subset of Zélus to a
C++ simulation code using DynIbex. An example is presented, showing the results
obtained with the standard Zélus simulation and with the interval-based one.

The rest of the paper is organized as follows. In Section 2, we briefly present
Zélus and the features we handle. Section 3 provides a quick introduction to DynIbex
and demonstrates how to encode an IVP using the library. Section 4 addresses the
compilation schema. Experimental results are described in Section 5. Section 6 is
devoted to related work and we conclude and comment on possible further works
in Section 7.

2 Zélus Succinctly, Used Features

Zélus is a synchronous programming language extended with ordinary differential
equations (ODEs). It provides a wide range of features like synchronous dataflow
equations, hierarchical automata, signals, data-types, pattern-matching, functional
features, etc. In this paper, we will only address the constructs required to im-
plement IVPs. Zélus makes it possible to model systems in which there is an
interaction between discrete-time and continuous-time dynamics. In this work, we
do not address any discrete-time behavior.

Interval-based Simulation of Zélus IVPs using DynIbex 7

A program in Zélus is a hierarchy of nodes, possibly parameterized, containing
equations relating the inputs and outputs of each node. A node can be instantiated
in another one to import the equations of the former in the latter, where parameters
are replaced by the effective arguments provided at the instantiation point. This
mechanism allows the reuse of sets of equations with different parameters. An IVP
is represented by a system of coupled equations coming from the equations defined
in a node and those imported from instantiated nodes.

The model of a simple harmonic oscillator with dampening, described by the
equation ẍ + k2 ẋ + k1 x = 0 with initial values x(0) = 1, ẋ(0) = 0, can be written in
Zélus as:

l e t hybrid shm_decay (x0 , x ’ 0 , k1 , k2) = x where
rec der x = x ’ i n i t x0
and der x ’ = −. k1 ∗ . x −. k2 ∗ . x ’ i n i t x ’ 0

l e t hybrid main () = y where
y = shm_decay (1 . 0 , 0 . 0 , 4 . 0 , 0 . 4)

where der x represents ẋ and der x’ is ẍ. The node main instantiates the node
shm_decay with specific initial values and k1 and k2. Note that floating-point
arithmetic operators are suffixed by a dot in Zélus.

3 DynIbex in a Few Words, Used Features

DynIbex is a C++ library that builds on the Ibex library. Ibex provides tools to
develop programs for constraint processing over real numbers using interval arith-
metic and affine arithmetic. DynIbex adds validated numerical integration methods
(including handling of floating-point rounding errors). To describe an IVP one de-
fines objects of predefined classes to represent the initial values and the ODEs of
the system, using vector-valued representation. That is, initial values are a vector
of intervals and the ODEs are “merged” into one unique function whose domain and
codomain are vectors of intervals. Once these objects are defined, a dedicated func-
tion is called to perform the simulation with the desired parameters (integration
method, duration, precision, etc.).

Using the example introduced in Section 2, we show in Figure 1 the expected
result of the compilation into C++ code, where the red parts represent code de-
pendent on the compiled IVP. After instantiation of the node shm_decay with
the effective arguments, the set of equations is der x = x′ init 1 and der x′ =
−4x − 0.4x′ init 0.

The variable dim represents the number of equations of the system, y represents
the continuous state of the system, ydot encodes the differential equations in the
Return expression. The mapping from the coupled equations x and x’ to the
vector-valued representation assigns x to the dimension 0 (y[0]) and x’ to the
dimension 1 (y[1]). All the numerical constants are transformed into single-point
intervals taking rounding issues in account. If a float cannot exactly be represented,
the obtained interval is the smallest containing this float. The initial conditions
of the problem are stored in yinit. The number of noise symbols is set using

8 Jason Brown and François Pessaux

#define T0 (0.0)
#define TEND (6.0)
#define PREC (1e-8)
#define NOISESYMBS (150)
int main () {

const int dim = 2 ;
Var iab le y (dim) ;
In t e rva lVec to r y i n i t (dim) ;
Function ydot =

Function (y , Return (y[1], ((-Interval (4.0)) * y[0]) - (Interval (0.4) * y[1]))) ;
yinit[0] = Interval (1.0) ;
yinit[1] = Interval (0.0) ;
ibex : : AF_fAFFullI : : setAff ineNoiseNumber (NOISESYMBS) ;
ivp_ode problem = ivp_ode (ydot , T0 , y i n i t) ;
s imu la t i on simu = s imu la t i on (&problem , TEND, LC3 , PREC) ;
simu . run_simulation () ;
simu . export_y0 (" export ") ;
return 0 ;

}

Figure 1: IVP encoding in DynIbex (targeted generated C++ code)

setAffineNoiseNumber. An IVP object problem is created to group the initial
values, the equations and the initial time. A simulation object simu is created and
run. Finally, the results are exported as plain text, providing for each time interval
of the simulation the intervals representing the solution of each equation.

4 Compiling an IVP

4.1 Overview

For several reasons, it is impossible to simply rewrite Zélus’s backend to make it
generate C++ code instead of OCaml code and get hybrid systems for free with
DynIbex.

First, the generated OCaml code is tightly dependent on the ODE solver used
by Zélus and the solving runtime is very different from DynIbex’s mechanisms. Sec-
ond, the runtime simulation code is deeply mixed with the IVP problem code,
making impossible to distinguish between code to be translated into C++, code to
be transformed into intervals and code which should be ignored. Finally, intervals
are strongly incompatible with point-wise simulation. General Zélus programs may
contain discrete code running on events, using continuous values. When working
with intervals, these values are no longer exact which makes, for instance, condi-
tional constructs fuzzy : a test may be true and false at the same time. In such a
situation, a usual computation cannot be carried out anymore.

For these reasons, we need a dedicated compilation schema to bind Zélus and
DynIbex and decide to address only IPV in this work.

In this context, compiling the Zélus code requires two steps. First, the hierar-
chy of nodes must be flattened, harvesting all the differential equations and their
initial values. During this process, each node instantiation expression is replaced
by the body of the node where the occurrences of its parameters are replaced by

Interval-based Simulation of Zélus IVPs using DynIbex 9

the effective expressions provided at the instantiation point. This process implies a
recursive inlining mechanism which terminates since Zélus forbids recursive nodes.
Since DynIbex simulation only accepts a system of differential equations as input,
regular dataflow equations must be transformed into differential equations by sym-
bolic differentiation.

Once the intermediate representation of the flattened system is obtained, the
multiple equations have to be aggregated into a unique vector-valued function to
finally generate the C++ code. Each differential equation corresponds to one dimen-
sion of the DynIbex Function data-structure. Initial conditions are also transformed
into interval vectors. During this process, Zélus expressions are compiled to C++
expressions. Since nodes are flattened, leading to a list of equations, this process
mostly consists of a translation of arithmetic expressions into C++, mapping the
identifiers to the appropriate vector component, and converting real constants into
trivial proper rounded intervals (i.e. the smallest interval containing the translated
float).

4.2 Compiling to the Intermediate Representation
The restricted syntax of programs addressed in this work is given in Figure 2.

p ∶∶= n+ Program
n ∶∶= hybrid f (x∗) = y where eq+ Node
eq ∶∶= der x = e1 init e2 Differential equation

∣ x = e Regular dataflow equation
e ∶∶= r Real numeric constant

∣ x Identifier
∣ e1 op e2 Arithmetic expression
∣ f (e∗) Node instantiation

Figure 2: Syntax subset of Zélus for IVP

A program p is a list of nodes. A node n is the definition of a parameterized
component returning a value y which is the result of one of the equations eq defined
in this node. An equation eq may be a differential equation with an initial value e2 or
a regular dataflow equation binding an expression e to an identifier x. Expressions
are numeric constants, identifiers, arithmetic expressions or the instantiation of a
node named f with expressions. Node instantiations cannot be self-recursive.

The elaboration of the intermediate representation of an IVP proceeds recur-
sively on the Abstract Syntax Tree of the program. The inlining pass relies on an
environment E, a partial function from node names to node descriptions. We note
⟪n, d⟫ the environment mapping the node name n to its description d and use
the + symbol to denote the addition of a new binding to an environment. A node
description is a triplet (I, y,E) where I is the list of the node’s formal parameters,
y is the output of the node (i.e. the name of one of its equations), E is the list of
ivpeqs describing the ODEs of the node. An ivpeq is a triplet ⟨x, e1, e2 ⟩ where x is
the name of the differential equation, e1 is its expression and e2 is its initial value.

10 Jason Brown and François Pessaux

The node instantiation inlining requires a substitution operation on expressions
and ivpeqs. Such a substitution is a partial application with a finite domain from
identifiers to expressions. We denote by [x1 ← e1; . . . ;xn ← en] the substitution of
the domain {x1,⋯, xn} associating the expression ei to the identifier xi. We extend
a substitution to an application from expressions to expressions and from ivpeqs to
ivpeqs as described in the Figure 3.

⟨x, e1, e2 ⟩[y ← e] = ⟨x, e1[y ← e], e2[y ← e] ⟩
r[y ← e] = r
x[y ← e] = x if x /= y
x[x← e] = e
(e1 op e2)[x← e] = e1[x← e] op e2[x← e]
f (e1, . . . en)[x← e] = f (e1[x← e], . . . en[x← e])

Figure 3: Substitution in an ivpeq and expressions

Figure 4 gives an example of the inlining process. In gray is the Zélus code.
When processing the node foo no changes occur since it contains no instantiation
expression. The node bar contains two instantiations. For each of them we import
the contents of the node where the formal parameters have been replaced by the
effective arguments of the instantiation. Then we add this new equation and we
replace the instantiation expression by the name of this new equation. Note that
to avoid name conflicts, equations are renamed during this process.

l e t hybrid f oo (a , b , c) = v where
der v = −9 .8 − c ∗ a i n i t b

foo: v0, v1, v2 -> v3
der v3 = -9.8 - (v2 * v0) init v1

l e t hybrid bar (y , z , k) = (x1) where
rec der x2 = f oo (x2 − x1 , 0 , k + 0 . 5) i n i t 2 + 3
and der x1 = f oo (x2 ∗ x1 , z , k) i n i t y

bar: v0, v1, v2 -> v4
der v3 = v5 init (2 + 3)
der v4 = v6 init v0
der v5 = -9.8 - ((v2 + 0.5) * (v3 - v4)) init 0
der v6 = -9.8 - (v2 * (v3 * v4)) init v1

l e t hybrid main () = x where
x = bar (1 , (1 / 2) , 3 . 14)

main: -> v0
der v0 = v3 init 1
der v1 = v2 init (2 + 3)
der v2 = -9.8 - ((3.14 + 0.5) * (v1 - v0)) init 0
der v3 = -9.8 - (3.14 * (v1 * v0)) init (1 / 2)

Figure 4: Node instantiation inlining example

Since the Function class of DynIbex can only encode ODEs, it is impossible to
directly express the equations for u or v in the following example.

Interval-based Simulation of Zélus IVPs using DynIbex 11

hybrid f oo () = u where
rec der z = u i n i t 3 .0
and u = 5 .0 +. z +. v
and v = 1 . +. z

We cannot simply inline the body of u at each occurrence in the equations since
u is the return identifier of the node. The solution is to symbolically differentiate
5 + z + v, i.e. create the expressions corresponding to δ(5 + z + v) and the initial
value of 5 + z + v. Inside this expression, the identifier z represents an ODE, so
its derivative is exactly the body of z. However, v represents a regular dataflow
equation. Hence v must be replaced by the (recursive) differentiation of its body.
Thus, the whole equation is replaced by der u = 0 + u + 0 + u. The initial value
of this new equation is the original body of u in which z is replaced by the initial
value of der z and v is replaced by its body in which we recursively apply the
transformation. The obtained result is init 5 + 3 + 1 + 3. In summary, while
processing a node definition, any equation defined by y = e must be replaced by
der y = B (e) init I (e) where B (e) and I (e) are given in Figure 5.

B (r) = 0
B (e1 + e2) = B (e1) + B (e2)
B (e1 ∗ e2) = B (e1) ∗ e2 + e1 ∗ B (e2)
B (e1 / e2) = (B (e1) ∗ e2 − e1 ∗ B (e2)) / (e2 ∗ e2)
B (x) = e1 if x is defined by der x = e1 init e2
B (x) = B (e) if x is defined by x = e

I (r) = r
I (e1 + e2) = I (e1) + I (e2)
I (e1 ∗ e2) = I (e1) ∗ I (e2)
I (e1 / e2) = I (e1) / I (e2)
I (x) = e2 if x is defined by der x = e1 init e2
I (x) = I (e) if x is defined by x = e

Figure 5: B (e) and I (e) rules

The compilation rules for expressions are given in Figure 6. The judgment E ⊢
e1 →4 (e2,D) means that, in the environment E, the expression e1 is transformed
into the expression e2 and produces the set of ivpeqs D.

The rule Num handles a real numeric constant and produces the same constant
with an empty set of ivpeqs. The rule Id handles identifiers the same way. The
rule App handles the node instantiation and is in charge of the effective inlining.
The name f is expected to be bound in the environment to a node description.
The expression returned by the rule App is the identifier naming the output of
f and the ivpeqs set is the one of f in which all the occurrences of the formal
parameters xi of f have been substituted by the corresponding effective argument
expressions e′i. In this rule, to simplify the presentation, we omit the renaming of
all the identifiers of the inlined node by fresh variables (i.e. not appearing anywhere
in the program). This renaming is mandatory to avoid variable capture. Finally,
the rule Opp recursively processes the two sub-expressions to rebuild an arithmetic

12 Jason Brown and François Pessaux

(Num)

E ⊢ r →4 (r, ∅)
(Id)

E ⊢ x→4 (x, ∅)

(App)

E(f) = ({x1, . . . , xn}, y,{⟨d1 ⟩, . . . , ⟨dm ⟩})
E ⊢ e1 →4 (e′1, D1) . . . E ⊢ en →4 (e′n, Dn)

d′1 = d1[xi ← e′i]i=1...n . . . d′m = dm[xi ← e′i]i=1...n
E ⊢ f (e1, . . . , en) →4 (y, {⟨d′1 ⟩, . . . , ⟨d

′

m ⟩} ∪ D1 ∪ . . . ∪Dn)

(Op)

E ⊢ e1 →4 (e′1, D1) E ⊢ e2 →4 (e′2, D2)
E ⊢ e1 op e2 →4 (e′1 op e

′

2, D1 ∪D2)

Figure 6: Compilation of expressions

expression and the union of the ivpeqs obtained for each sub-expression.
The compilation rules for equations are given in Figure 7. The judgment E ⊢

eq →3 D states that the equation eq produces the set of ivpeqs D.

(Eq)

E ⊢ e→4 (e′, D) eb = B (e′) ei = I (e′)

E ⊢ x = e→3 ⟨x, eb, ei ⟩ + D

(Der)

E ⊢ e1 →4 (e′1, D1) E ⊢ e2 →4 (e′2, D2)

E ⊢ der x = e1 init e2 →3 ⟨x, e′1, e
′

2 ⟩ + D1 ∪D2

Figure 7: Compilation of equations

The rule Eq handles regular dataflow equations. It transforms the body e of the
equation to obtain the ivpeqs representing inlined node instantiation expressions of
e. The equation is differentiated and added as a new ivpeq. The rule Der performs
the inlining transformation on the body and initial value of the differential equation,
and returns the set made of the ivpeqs obtained for each sub-expression extended
with the one created for x.

Finally, the compilation rules for nodes then programs are given in Figure 8.

(Node)

E ⊢ eq1 →3 D1 . . . E ⊢ eqn →3 Dn

E ⊢ hybrid f (x1, . . . , xm) = y where eq1 . . . eqn →2

⟪ f, ({x1, . . . , xn }, y, D1 ∪ . . . ∪Dn)⟫ +E

(Prg)

E ⊢ nod1 →2 E1 . . . En−1 ⊢ nodn →2 En

E ⊢ {nod1, . . . , nodn} →1 En

(Top)

∅ ⊢ p→1 E ∃ ⟪main, ({x1, . . . , xm }, y,{ eq1, . . . , eqn })⟫ ∈ E
eqi = ⟨xi, ei, di ⟩i=1...n σ = [xi ↦ i]

t0, tf ⊢ p→ (n,{ e1, . . . , en },{d1, . . . , dn }, t0, tf), σ

Figure 8: Rules for intermediate representation synthesis

The rule Node processes one node, harvesting the ivpeqs obtained from its
equations. It returns the environment extended with the node description of f .

Interval-based Simulation of Zélus IVPs using DynIbex 13

The rule Prg iterates this process on the list of nodes making the program. The
description of each processed node is added to the environment to process the
remaining ones. Since Zélus imposes that a node is always defined before any use
of it, this ensures that we will always find the node description bound to a node
identifier present in an instantiation. The rule Top processes all the nodes of the
program p, then looks for a node named main. It builds the representation of the
IVP as a tuple containing the size of the problem, the list of ODEs expressions,
the list of initial values, the initial (t0) and final (tf) dates of the simulation and
a substitution σ. This substitution maps each identifier binding an equation to an
integer representing the rank of its equation. It will be used during the C++ code
generation.

Optimization The combination of the instantiation inlining and the differen-
tiation process can produce duplicated equations which is inefficient since this in-
creases the size of the system. Consider the Zélus program given in Section 2. After
the inlining in the node main, we get the set of equations :

der x = x′ init 1
der x′ = −4 ∗ x − 0.4 ∗ x′ init 0
y = x

which is transformed during differentiation of y into :
der x = x′ init 1
der x′ = −4 ∗ x − 0.4 ∗ x′ init 0
der y = x′ init 1

where x and y are redundant. To overcome this inefficiency, when processing equa-
tions of the form y = x, we drop the equation and replace y by x in the node (i.e.
in its equations and its return value).

4.3 Generating C++ Code

The C++ code generation mostly consists of generating a template like the one
shown in Figure 1, where the dimension of the system, the Function object and
the initial conditions are instantiated from the intermediate representation of the
compiled IVP. Hence, the code generation relies on the intermediate representation
of the node main and on some data outside the model (duration, integration method,
precision, number of noise symbols) provided at compile-time.

The rule Top already provides the list of initial values and differential expres-
sions. Most of what remains is the translation of arithmetic expressions into C++.
The substitution σ returned by this rule is used while generating the initial values
and the Function object representing the equations. It allows the replacement of
identifiers by accesses in the arrays used for DynIbex’s vector-valued representation
of the equations. Thus, in the Function object, an identifier x is translated into
y[σ (x)]. In the same way, the initial value of x is set in yinit[σ (x)]. A numerical
constant n is translated into the trivial interval Interval (n).

14 Jason Brown and François Pessaux

5 Experimental Results

We extended the Zélus compiler to implement the described compilation process.
This new backend operates on the intermediate representation obtained after type,
causality and initialization analyses and does not interfere with the standard com-
pilation.

The first experiment was to simulate the system with Zélus and with our gener-
ated code, then to compare the results. In Figure 9, the Zélus native simulation is
represented by the red line and the simulation obtained using the intervals is shown
by the green boxes.

Figure 9: Simulations with/without intervals

The two simulations behave consistently. In particular, the results obtained with
the standard integration runtime of Zélus always remain inside the boxes obtained
using the intervals mechanism. This suggests that the native integration runtime of
Zélus is precise enough in this example to avoid inaccuracies that could be caused
by float rounding errors.

The Zélus syntax has been extended to specify an alternative interval value for
any float value. This interval is only taken into account when compiling toward
DynIbex. Hence, it is possible to add uncertainty on the initial value of der x, by
writing y = shm_decay (1.0 [0.9; 1.0], 0.0, 4.0, 0.4). The “default” value
1.0 is then ignored and the interval [0.9; 1.0] is considered instead. The simula-
tion obtained after this change, displayed in Figure 10, shows that both simulations
continue to behave consistently, but the effect of the uncertainty becomes clearly
visible.

It is also possible to add uncertainty on the coefficients of the equations. The
examples in Figure 11 are based on a value of k2 in [0.3; 0.4] instead of 0.4. At

Interval-based Simulation of Zélus IVPs using DynIbex 15

Figure 10: Simulation with initial uncertainty

compile-time, it is possible to select different integration methods, precisions, etc.
From left to right, top to bottom, we used third-order Runge-Kutta 10−10, Heun’s
method 10−6, fourth-order Runge-Kutta 10−6 and fourth-order Gauss-Legendre
10−12.

Figure 11: Simulation with parameter uncertainty

16 Jason Brown and François Pessaux

Despite a loss of precision, simulating with intervals to model uncertainties
allows one to run one unique simulation instead of several point-wise simulations to
try to cover the entire range of uncertainty. The simulation result is less accurate
but safe and guaranteed. Running several point-wise simulations is not satisfactory:
how many must be ran, which values must be chosen? There is no guaranty that the
chosen strategy covers all the possible behaviors. The Figure 12 shows the inclusion
of several point-wise simulations in a single interval-based simulation. In the top

Figure 12: Point-wise simulations vs interval simulation

Interval-based Simulation of Zélus IVPs using DynIbex 17

picture, the interval for the initial condition of der x is [0.9; 1]. In the bottom
picture, the interval for k2 is [0.3; 0.4]. We plot several point-wise simulations in
these ranges of uncertainty. As one expects for safety purposes, the interval-based
simulations cover all the point-wise ones.

6 Related Work

Several frameworks exist for reachability analysis of hybrid systems, though few
have a high-level programming language in which to directly describe the systems.

• JuliaReach [14] is a Julia library performing set-based reachability analysis
on both linear and non-linear systems. The description of the system to
analyze has to be manually encoded in Julia using the tools provided by the
library.

• CORA [2] is a toolbox written in MATLAB providing advanced data-struc-
tures and reachability algorithms for linear and non-linear systems. It has
been extended with intervals and Taylor models [3, 4]. The modeling of
a system is manually done in MATLAB, hence considering floating-point
arithmetic as exact.

• SpaceEx [10] is a verification platform to model linear (or piece-wise lin-
ear) hybrid systems and compute the sets of reachable states using different
reachability algorithms. It relies on floating-point arithmetic, though it fails
to account for rounding errors. Systems are modeled in a dedicated interface
(or in a XML file). A graphical WEB interface is available to set parame-
ters, run simulations and visualize the results. A translator from a subset of
Simulink to SpaceEx is also available [16].

• FLOW* [8] allows one to model non-linear hybrid systems with uncertainties
and compute an over-approximation of reachable states using Taylor models
and guaranteed floating-point arithmetic.

• Hyson [5] allows one to perform set-based simulations of Simulink hybrid
models (continuous and discrete, linear and non-linear, using a subset of the
language). It provides guaranteed integration based on Runge Kutta method
with handling of floating-point rounding errors. It can be considered as an
ancestor of this work.

• dReal [11, 12] encodes hybrid systems as SMT modulo ODEs problems. A
system has to be encoded as a first-order logic formula with the properties it
must respect in the SMT-LIB format. It is then able to check if the properties
of the system hold. However, it does not provide high-level constructs to write
the systems.

18 Jason Brown and François Pessaux

• The Acumen [17, 15] framework provides ways to express various kinds of
hybrid systems in a Domain Specific Language. It allows point-wise simula-
tions to provide very fancy dynamic visual representations. It also provides
an enclosure interpreter supporting intervals to handle uncertainties for sys-
tem verification purposes. The main differences with our work come from
the nature of the input language and the integration mechanism. Using Zélus
provides various static analyses and advanced constructs. Though we do not
handle some of these constructs here, work is underway to address a larger
subset of the Zélus language, including automata, and thus model more com-
plex systems. DynIbex was chosen as a simulation framework as it provides
guaranteed integration methods which handles floating-point issues.

7 Future Work

This exploratory work can be extended in three directions. The first direction aims
at considering more complex systems. We would like to address IVPs with reset
conditions (guards). In such systems, the ODEs are fixed, however the continuous
state can be set to particular values on some conditions. To go further, we would like
to address systems with several dynamics. In these systems, the ODEs involved
in the dynamics may change depending on the state of the system. This will
naturally be represented in Zélus by automata. Some obvious issues arise due to
the temporal and spacial uncertainties represented by the intervals when changing
state in an automaton. Moreover, the compilation schema to implement this will
have to remain compatible with the IVPs simulation presented here, while also
handling the more elaborate constructs of Zélus.

The second direction is to add contracts in Zélus and to be able to check if they
hold during the simulation. First, the form of properties to verify must be chosen
since this will have an impact on the logic to use. Then there is the choice of when to
verify the contracts: during the simulation or at the end of the simulation. Finally,
we need to compile the formulae and represent them with DynIbex constructs.

The last extension of this work is to address the discrete behavior it is possible
to model in Zélus. The programs currently supported are restricted to continuous
computation. This enables us to model the dynamics of a physical system but not
a controller coupled to this system.

8 Conclusion

We presented a mechanism to compile IVPs described in Zélus to C++ code us-
ing DynIbex. This allows the simulation of programs written in a high-level pro-
gramming language with interval-based validated numerical integration methods.
Various parameters can be set at compile-time to tune the simulation accuracy.
This work is fully implemented in the Zélus compiler. Extensions to handle more
complex systems and to compile contracts verification on programs are in progress.

Interval-based Simulation of Zélus IVPs using DynIbex 19

References
[1] Alexandre dit Sandretto, Julien, Chapoutot, Alexandre, and Mullier,

Olivier. The DynIbex library. https://perso.ensta-paris.fr/~chapoutot/
dynibex/.

[2] Althoff, Matthias. An introduction to CORA 2015. In Frehse, Goran and
Althoff, Matthias, editors, ARCH14-15. 1st and 2nd International Workshop
on Applied veRification for Continuous and Hybrid Systems, volume 34 of
EPiC Series in Computing, pages 120–151. EasyChair, 2015. DOI: 10.29007/
zbkv.

[3] Althoff, Matthias and Grebenyuk, Dmitry. Implementation of interval arith-
metic in CORA 2016. In ARCH@CPSWeek, volume 43 of EPiC Series in
Computing, pages 91–105. EasyChair, 2016. DOI: 10.29007/w19b.

[4] Althoff, Matthias, Grebenyuk, Dmitry, and Kochdumper, Niklas. Implemen-
tation of taylor models in CORA 2018. In ARCH@ADHS, volume 54 of EPiC
Series in Computing, pages 145–173. EasyChair, 2018. DOI: 10.29007/zzc7.

[5] Bouissou, Olivier, Mimram, Samuel, and Chapoutot, Alexandre. HySon: Set-
based simulation of hybrid systems. In Proceedings of IEEE International
Symposium on Rapid System Prototyping, pages 79–85, 2012. DOI: 10.1109/
RSP.2012.6380694.

[6] Bourke, Timothy and Pouzet, Marc. Zélus: A synchronous language with
ODEs. In Proceedings of the 16th International Conference on Hybrid Sys-
tems: Computation and Control, pages 113–118. ACM, 2013. DOI: 10.1145/
2461328.2461348.

[7] Carloni, Luca P., Passerone, Roberto, Pinto, Alessandro, and Angiovanni-
Vincentelli, Alberto L. Languages and tools for hybrid systems design. Found.
Trends Electron. Des. Autom., 1(1):1–193, 2006. DOI: 10.1561/1000000001.

[8] Chen, Xin, Ábrahám, Erika, and Sankaranarayanan, Sriram. Flow*: An an-
alyzer for non-linear hybrid systems. In Proceedings of the 25th International
Conference on Computer Aided Verification - Volume 8044, CAV 2013, pages
258–263, New York, NY, USA, 2013. Springer-Verlag New York, Inc. DOI:
10.1007/978-3-642-39799-8_18.

[9] dit Sandretto, Julien Alexandre and Chapoutot, Alexandre. Validated explicit
and implicit Runge–Kutta methods. Reliable Computing, 22(1):79–103, 2016.

[10] Frehse, Goran, Le Guernic, Colas, Donzé, Alexandre, Cotton, Scott, Ray,
Rajarshi, Lebeltel, Olivier, Ripado, Rodolfo, Girard, Antoine, Dang, Thao,
and Maler, Oded. SpaceEx: Scalable verification of hybrid systems. In
Ganesh Gopalakrishnan, Shaz Qadeer, editor, Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV), LNCS, pages 379–395. Springer,
2011. DOI: 10.1007/978-3-642-22110-1_30.

20 Jason Brown and François Pessaux

[11] Gao, S., Kong, S., and Clarke, E. M. dReal: An SMT solver for nonlinear
theories over the reals. In International Conference on Automated Deduction,
volume 7898 of Lecture Notes in Computer Science, pages 208–214. Springer,
2013. DOI: 10.1007/978-3-642-38574-2_14.

[12] Gao, Sicun, Kong, Soonho, and Clarke, Edmund M. Satisfiability modulo
ODEs. In Proceedings of Formal Methods in Computer-Aided Design. IEEE,
2013. DOI: 10.1109/FMCAD.2013.6679398.

[13] Henzinger, Thomas A., Horowitz, Benjamin, Majumdar, Rupak, and Wong-
Toi, Howard. Beyond HyTech: Hybrid systems analysis using interval numer-
ical methods. In Hybrid Systems: Computation and Control, pages 130–144.
Springer Berlin Heidelberg, 2000. DOI: 10.1007/3-540-46430-1_14.

[14] Immler, Fabian, Althoff, Matthias, Chen, Xin, Fan, Chuchu, Frehse, Goran,
Kochdumper, Niklas, Li, Yangge, Mitra, Sayan, Tomar, Mahendra Singh, and
Zamani, Majid. ARCH-COMP18 category report: Continuous and hybrid
systems with nonlinear dynamics. In Frehse, Goran, editor, ARCH18. 5th In-
ternational Workshop on Applied Verification of Continuous and Hybrid Sys-
tems, volume 54 of EPiC Series in Computing, pages 53–70. EasyChair, 2018.
DOI: 10.29007/mskf.

[15] Konečný, Michal, Taha, Walid, Duracz, Jan, Duracz, Adam, and Ames, Aaron.
Enclosing the behavior of a hybrid system up to and beyond a Zeno point. In
2013 IEEE 1st international conference on cyber-physical systems, networks,
and applications (CPSNA), pages 120–125, United States, 2013. IEEE. DOI:
10.1109/CPSNA.2013.6614258.

[16] Minopoli, Stefano and Frehse, Goran. SL2SX translator: From Simulink to
SpaceEx models. In Proceedings of the 19th International Conference on
Hybrid Systems: Computation and Control, pages 93–98, 04 2016. DOI:
10.1145/2883817.2883826.

[17] Zeng, Yingfu, Rose, Chad G., Brauner, Paul, Taha, Walid, Masood, Jawad,
Philippsen, Roland, O’Malley, Marcia K., and Cartwright, Robert. Modeling
basic aspects of cyber-physical systems, part II. In Procceedings of the 2014
IEEE Intl Conf on High Performance Computing and Communications, 2014.
DOI: 10.1109/HPCC.2014.119.

Acta Cybernetica 25 (2021) 21–48.

Toward the Development of Iteration Procedures

for the Interval-Based Simulation of

Fractional-Order Systems

Andreas Rauh and Julia Kerstena

Abstract

In many fields of engineering as well as computational physics, it is neces-
sary to describe dynamic phenomena which are characterized by an infinitely
long horizon of past state values. This infinite horizon of past data then
influences the evolution of future state trajectories. Such phenomena can
be characterized effectively by means of fractional-order differential equa-
tions. In contrast to classical linear ordinary differential equations, linear
fractional-order models have frequency domain characteristics with ampli-
tude responses that deviate from the classical integer multiples of ±20 dB per
frequency decade and, respectively, deviate from integer multiples of ±π

2
in

the limit values of their corresponding phase response. Although numerous
simulation approaches have been developed in recent years for the numerical
evaluation of fractional-order models with point-valued initial conditions and
parameters, the robustness analysis of such system representations is still
a widely open area of research. This statement is especially true if inter-
val uncertainty is considered with respect to initial states and parameters.
Therefore, this paper summarizes the current state-of-the-art concerning the
simulation-based analysis of fractional-order dynamics with a restriction to
those approaches that can be extended to set-valued (interval) evaluations for
models with bounded uncertainty. Especially, it is shown how verified simu-
lation techniques for integer-order models with uncertain parameters can be
extended toward fractional counterparts. Selected linear as well as nonlinear
illustrating examples conclude this paper to visualize algorithmic properties of
the suggested interval-based simulation methodology and point out directions
of ongoing research.

Keywords: interval analysis, fractional-order differential equations, Picard
iteration, exponential enclosure techniques, Mittag-Leffler functions

aUniversity of Rostock, Chair of Mechatronics, Justus-von-Liebig-Weg 6, D-18059 Ros-
tock, Germany. E-mail: Andreas.Rauh@interval-methods.de, Julia.Kersten@uni-rostock.de.
ORCID: https://orcid.org/{0000-0002-1548-6547, 0000-0002-1160-8623}.

DOI: 10.14232/actacyb.285660

22 Andreas Rauh and Julia Kersten

1 Introduction

Simulation procedures for fractional-order systems have been investigated in many
current research projects. Such simulation procedures involve the numerically ef-
ficient and accurate evaluation of functions of the Mittag-Leffler type, the im-
plementation of numerically efficient and robust simulation routines based on the
Grünwald-Letnikov differentiation operator for linear and nonlinear system models,
Laplace domain representations for the linear case, the development of frequency
domain-based procedures and the design of software packages such as crone tool-
box. This toolbox includes computational routines for fractional-order time- and
frequency-domain system identification, fractional-order path planning techniques,
and approaches for a fractional-order control synthesis [10, 12, 13,23,27,30].

Among the approaches mentioned above, the Grünwald-Letnikov operator for
numerically approximating fractional-order derivatives and the corresponding nu-
merical integration of fractional system models is widely used in engineering ap-
plications. It is based on a temporal series expansion of the fractional derivative
operator and coincides, when setting the fractional differentiation order to one (i.e.,
considering classical first-order ordinary differential equations) to the well-known
temporal Taylor series expansion of the solution to an ordinary differential equa-
tion that is typically truncated after some finite order in any numerical simulation
of dynamic systems. The general drawback of this numerical evaluation scheme is
the necessity for a large number of summands in the series expansion to capture
the long-term memory effects of fractional systems with sufficient accuracy. Al-
though the Grünwald-Letnikov operator is generally applicable to linear as well as
nonlinear fractional-order models, the large number of required terms in the series
expansion prevents its naive use to general system models with uncertain parame-
ters and initial conditions due to the inevitably arising wrapping effect. To avoid
this wrapping effect, that also occurs if high-order series expansions are applied in
the case of classical ordinary differential equations with purely integer-order deriva-
tives, this paper is focused on using quasi-analytic representations of the enclosure
of the systems’ time responses by means of Mittag-Leffler functions [10]. Those
functions represent a generalization of classical exponential functions and can be
exploited — as shown for the first time in [33,35] — to represent enclosures for the
sets of reachable states for fractional-order systems if they are extended to the case
of interval arguments.

Besides series expansions in the time domain, also frequency-domain approxi-
mations can be determined [4, 9, 27, 28, 30]. They make use of approximating the
amplitude and phase responses by multiplicative concatenations (i.e., series con-
catenations in the respective signal flow) of fundamental linear Bode plot elements
corresponding to first- and second-order lead and lag elements and, under some cir-
cumstances, input-output transport delays. As such, these frequency-domain tech-
niques can be seen as the approximation of the fractional-order Laplace-domain
transfer functions by using Taylor, respectively, Laurent series to approximate
their numerators and denominators by expressions with integer-order powers of the
Laplace variable (except for an isolated classical transport delay operator). Due

Interval-Based Simulation of Fractional-Order Systems 23

to this strong relation to the Taylor and Laurent series expansion in the Laplace
domain, the resulting integer-order approximations are only applicable to systems
with dominating linear dynamics within a restricted frequency band. Although
such approximations are commonly not suitable for accurate system simulations,
they are well suited, if control design with sufficiently strong low-pass filter behav-
ior is concerned and, for example, for the experimental identification of fractional
models in restricted frequency bands with applications in engineering and biomedi-
cal tasks such as impedance spectroscopy for battery systems [2,38,39], rheological
material properties [29], or the study of visco-elastic properties of blood cells [5].

Linear control approaches that are described by fractional-order transfer func-
tions can be interpreted as extensions of classical output feedback routines of PID
type (proportional, integrating, differentiating) by replacing the integrating and dif-
ferentiating elements with their respective fractional-order generalizations [23, 27].

As already mentioned in the discussion of the Grünwald-Letnikov operator,
the amount of memory required to accurately represent the flow of a fractional-
order system model may become prohibitively large if long integration horizons
are considered. Hence, techniques for a short-term memory storage, going along
with quantifying the errors arising from restarting the numerical integration of a
fractional-order system at some specific point in time, are crucial in practice. In
this paper, techniques for quantifying the effect of resetting the temporal derivative
at some point of time will be used to describe guaranteed interval enclosures of the
arising errors. These interval enclosures are then interfaced in a novel manner
with the basic iteration approaches published in [33, 35] by combining them with
the solution representations in terms of Mittag-Leffler functions. In such a way, the
iterative solution scheme developed by the authors can be employed more efficiently
for simulation scenarios in which long prediction horizons are of practical interest.

Although the numerical integration routines based on temporal series expan-
sions, such as the Grünwald-Letnikov operator, are practically useful for a large
variety of fractional-order system models that are characterized by point-valued
system parameters and precisely known initial conditions, research concerning the
analysis of uncertain but bounded parameters is still at the very beginning if frac-
tional models are concerned. This problem has not yet received the same amount
of attention as for the case of integer-order sets of ordinary differential equations.
To the knowledge of the authors, only initial works were performed in this direction
which are based on generalizations of the Picard iteration to the fractional case [22].
Using this iteration, it becomes possible to compute guaranteed outer interval enclo-
sures for those states that are reachable over a sufficiently short prediction horizon.
However, these enclosures — resulting from the integral formulation of the Picard
iteration, see Theorem 3 in this paper — are typically quite conservative due to the
fact that the resulting bounding boxes describe time-invariant state bounds that
are valid for the complete prediction window.

In contrast to fractional-order systems, the task of verified simulation and reach-
ability analysis has been studied extensively over the last decades in the frame of
integer-order dynamic system models and corresponding control laws. Such tech-
niques are readily applicable in terms of software-based simulation packages and

24 Andreas Rauh and Julia Kersten

can be employed — among others — for the verification of safety constraints of
dynamic systems. State-of-the-art general-purpose initial value problem solvers for
such tasks make use of so-called verified simulation approaches which are based on
either interval analysis, zonotopic representations of the sets of reachable states, or
Taylor model arithmetic [26, 33,36].

By means of set-valued computations, these solvers avoid time-consuming grid-
ding techniques and Monte-Carlo sampling, where it has to be pointed out addi-
tionally that neither of these gridding and sampling techniques can provide any
guarantee of determining outer solution tubes that contain the exact sets of reach-
able states of a general dynamic system model with absolute certainty. In contrast
to grid- or sampling-based approaches, the fundamental property of those tubes
computed with the help of verified approaches is that a guaranteed outer hull of
the solutions of the underlying uncertain system model is determined [26]. To ac-
count for specific system properties such as a-priori proven asymptotic stability of
the system dynamics (which is often verified in advance if a guaranteed stabilizing
control design has been performed prior to evaluating the state equations), an ex-
ponential enclosure technique was developed by the working group of the authors
for the class of integer-order systems [36]. Relations of this exponential enclosure
approach to specific system properties such as cooperativity and positivity of a dy-
namic system [37] were published in [33]. If these latter properties are guaranteed
to be satisfied, it becomes possible to evaluate lower and upper bounding trajec-
tories independently during the numerical simulation. Such properties are often
exploited during the design of interval observers which can analogously be derived
for both, integer-order and fractional-order system representations [3, 8, 20, 31].

If state equations are not a-priori proven to be cooperative, especially the use
of the exponential enclosure technique allows for reducing overestimation (i.e., to
avoid unphysically wide bounds for the computed state trajectories) in the case of
asymptotically stable dynamics. This is caused by the fact that the exponential
enclosure technique [33, 35] aims at preserving stability properties in combination
with a reduction of the wrapping effect [16]. As shown in previous work, this
approach is most successful if a transformation of the state equations into a quasi-
linear system representation exists [35]. This transformation then has to ensure
that the simulation routine makes use of a set of quasi-linear state equations given
by a diagonally dominant form.

In this paper, the exponential enclosure technique is further developed for
fractional-order systems, where exponential functions describing the guaranteed
state enclosures have to be replaced by functions of the Mittag-Leffler type. The use
of Mittag-Leffler functions as the corresponding ansatz for the solution enclosures
is motivated by the fact that these functions represent the exact solutions of linear
fractional-order models with precisely known parameters, cf. [7,11]. To allow for an
efficient implementation of numeric simulation routines, preconditioning strategies
of the state equations into a diagonally dominant form, the influence of truncation
errors occurring from a finite-time approximation of the fractional-order systems’
memory, and monotonicity properties of Mittag-Leffler functions with respect to
its argument and with respect to the non-integer differentiation order need to be

Interval-Based Simulation of Fractional-Order Systems 25

investigated. These aspects are discussed in detail in the current paper together
with novel extensions towards the quantification of truncation errors resulting from
infinite memory effects of fractional-order dynamics.

Following the summary of preliminaries and the state-of-the-art in Secs. 2 and 3,
the exponential enclosure technique for interval-valued uncertain systems, which
was so far primarily studied for classical sets of ordinary differential equations, is
generalized to fractional-order models in Sec. 4. Here, we rely on the iteration pro-
cedure stated already in [33, 35]. In the current paper, relations of this approach
to the state-of-the-art, especially the integral formulation of the Picard iteration
in Theorem 3, and extensions by a more detailed analysis of monotonicity prop-
erties allowing for an efficient implementation in an interval arithmetic framework
together with handling temporal truncation errors are worked out as the novel con-
tributions in Sec. 5. Sec. 6 provides illustrating linear and nonlinear examples for
the use of the proposed enclosure technique before the paper is concluded with an
outlook on future work in Sec. 7.

2 Preliminaries

In the course of this paper, simulation routines for the case of integer-order dif-
ferential equations are first summarized. These routines are based on an interval-
based exponential enclosure technique. According to the corresponding publica-
tions in [33, 36], they result from a differential formulation of the Picard iteration.
Second, they are generalized toward the counterpart of fractional-order dynamics.
This generalization is essentially based on the replacement of exponential functions
by suitable Mittag-Leffler functions as already motivated in [33,35].

For that purpose, the two-parameter Mittag-Leffler function1 [10, 12, 14] is de-
noted by

Eν,β(ζ) =

∞∑
i=0

ζi

Γ (νi+ β)
(1)

with the general argument ζ ∈ C, the gamma function Γ (νi+ β), as well as the
parameters ν ∈ R+ and β ∈ R.

All system models in this paper are assumed to be given in terms of explicit,
autonomous, time-invariant2 state equations which are re-written — if possible —
according to Def. 1 into a quasi-linear form to enhance efficiency of the numerical
evaluation.

Definition 1 (Quasi-linear system model). After factoring out the state vector
x(t) ∈ R

n of a nonlinear autonomous system, initial value problems for quasi-linear

1The two-parameter Mittag-Leffler function serves as an exact solution representation for linear
fractional-order differential equations according to [7, 11].

2Note, the restriction to autonomous, time-invariant systems can be removed by the introduc-
tion of auxiliary state variables for the time argument as well as for time- and state-dependent
expressions included in control inputs. Corresponding procedures, leading to an increase of the
system dimension, were discussed exemplarily in [36] for the integer-order case.

26 Andreas Rauh and Julia Kersten

models
ẋ(t) = A (x(t)) · x(t) , A (x(t)) ∈ R

n×n , (2)

are specified with the vector of initial conditions

x(0) ∈ [x] (0) . (3)

Analogously, a commensurate-order set of fractional-order differential equations of
Caputo type [27,30] is defined by

x(ν)(t) = A (x(t)) · x(t) with 0 < ν < 1 , (4)

where initial conditions x(0) are defined according to (3).

For both system models in Def. 1, the initial state vector x(0) is assumed to be
described by the interval representation [x] (0) = [x(0) ; x(0)], where the inequali-
ties xi(0) ≤ xi(0) hold element-wise for each vector component i ∈ {1, . . . , n}.

The existence of a solution to the problem specified according to (4) with the
initial conditions (3) is ensured if either of the iteration procedures in Secs. 3 or 4
converges to an appropriate interval enclosure.

Definition 2 (Diagonally dominant model). Diagonally dominant quasi-linear sys-
tem models are given by the state-space representations

ż(t) = f (z(t)) =
(
T−1 ·A (T · z(t)) ·T) · z(t)

= A (z(t)) · z(t) , A (z(t)) ∈ R
n×n ,

(5)

and

z(ν)(t) = f (z(t)) = A (z(t)) · z(t) (6)

after a suitable similarity transformation

x(t) = T · z(t) , T ∈ R
n×n , z(t) ∈ R

n (7)

of the systems in Def. 1.

Remark 1. In this paper, we restrict ourselves to the case of real-valued similarity
transformations in (7). These transformations lead to the real-valued initial state
enclosures

z(0) ∈ T−1 · [x] (0) (8)

for both integer-order and fractional-order system models. As shown in [33,36] for
integer-order system models, also complex-valued similarity transformations are
possible. They are advantageous for the case of systems with conjugate-complex
eigenvalues and, hence, oscillatory dynamics. For both the real- and complex-valued
case with system models having an eigenvalue multiplicity of one, the transforma-
tion matrix T is composed of the eigenvectors of A (xm), computed at the interval
midpoint xm = 1

2 · (x(0) + x(0)). For generalizations to higher multiplicities, which
were so far only investigated for integer-order scenarios, see [36].

Interval-Based Simulation of Fractional-Order Systems 27

Remark 2. Where necessary for a compact notation of the iteration formulas
derived in the following sections, it is further assumed that a translation of the
state vector has been performed prior to solving the considered simulation task so
that the trajectories of the systems under consideration converge to the origin of
the state space if the dynamics are asymptotically stable.

Example 1. Fractional-order differential equations appear, as stated in the intro-
duction of this paper, in a variety of engineering applications. For example, series
connections of electric subcircuits containing resistors and capacitors can be used
for modeling the dynamics of Lithium-Ion batteries. The corresponding impedance
(as the quotient between terminal voltage and current) then takes the form of the
integer-order (IO) frequency response

ZIO(jω) =

n∑
i=0

bi · (jω)i
n∑

i=0

ai · (jω)i
(9)

with the imaginary unit j and the angular frequency ω ≥ 0. However, experimental
impedance spectroscopy data gives rise to the more general fractional-order (FO)
expression, see [2, 38, 39],

ZFO(jω) =

n∑
i=0

bi · (jω)νi

n∑
j=0

aj · (jω)νj

, (10)

where νi and νj are non-negative, not necessarily integer-valued parameters with
0 ≤ ν0 < ν1 < ν2 <

Here, numerator expressions of order νi are related to fractional derivatives of
the terminal current, while the orders νj in the denominator are connected with
a non-integer derivative of the terminal voltage. Due to the fact that a repeated
fractional-order differentiation, first of order νa and second of order order νb corre-
sponds in total with a derivative of order νa + νb, see [27, 30], the type of system
model mentioned in this example, can always be transferred into a commensurate-
order state-space representation according to Defs. 1 and 2 by setting ν to the
greatest common divisor of all fractional orders νi and νj .

3 State-of-the-Art Techniques Applicable to the
Verified Simulation of Fractional-Order System
Models

3.1 Exploitation of Differential Inclusions and Cooperativity

Theorem 1 (Differential inclusions for fractional-order differential equations).
Time-varying bounds for a fractional-order system described according to Def. 2

28 Andreas Rauh and Julia Kersten

are given by the interval vector

z(t) ∈ [v(t) ; w(t)] (11)

in which the individual components of the vectors v(t) and w(t) are solutions to
the coupled lower and upper bounding systems

v(ν)(t) = fv (v(t),w(t)) ≤ z(ν)(t) = f (z(t)) ≤ w(ν)(t) = fw (v(t),w(t)) (12)

representing differential inclusions for the dynamic system z(ν)(t) = f (z(t)).

Proof. Theorem 1 is a straightforward consequence of Müller’s theorem originally
published for integer-order ordinary differential equations [25]. Substituting the
integer-order derivatives in this theorem by their respective fractional-order coun-
terparts completes the proof.

Corollary 1 (Differential inclusions for cooperative fractional-order differential
equations). Time-varying bounds for cooperative, positive fractional-order systems
described according to Def. 2 are given by the interval vector

z(t) ∈ [v(t) ; w(t)] , vi(t) ≥ 0 , i ∈ {1, . . . , n} , (13)

in which the individual components of the vectors v(t) and w(t) are solutions to
the mutually decoupled lower and upper bounding systems

v(ν)(t) = f (v(t)) ≤ z(ν)(t) = f (z(t)) ≤ w(ν)(t) = f (w(t)) . (14)

Proof. Assume a cooperative dynamic system with strictly non-negative states
zi(t) ≥ 0 satisfying the sufficient criterion for cooperativity [8, 17, 32, 37] given
by

Ji,j (z) ≥ 0 for all i �= j , i, j ∈ {1, . . . , n} with J =
∂f (z)

∂z
. (15)

An element-wise minimization (respectively, maximization) of the function f (z(t))
over the state interval (13) directly leads to its element-wise defined lower bound
f (v(t)) (respectively, upper bound f (w(t))).

The property exploited in Corollary 1 is widely employed in the frame of observer
design for both, integer-order and fractional-order system models. Suitable refer-
ences concerning observer design as well as for its dual task, namely, cooperativity-
preserving control synthesis can be found in [8, 15, 20, 32, 34]. If cooperativity is
either directly given after first-principle modeling of the systems in Def. 1 or Def. 2,
Corollary 1 provides overestimation-free state bounds if the element-wise minimiza-
tions and maximizations mentioned in the proof above coincide with actually reach-
able operating conditions. It has to be noted that in this case it is not necessary
(from a practical point of view) to apply interval-based simulation routines as long
as temporal discretization errors in the differential equations for v(t) and w(t) are

Interval-Based Simulation of Fractional-Order Systems 29

negligibly small. For several practically relevant system models, such as the interval
observer design for a fractional-order battery model in [15], cooperativity can be
ensured by design. Alternatively, a cooperativity-enforcing change of variables can
be performed to remove the restrictive assumptions imposed by cooperativity if a
dynamic system model is initially not cooperative. Details about suitable trans-
formation techniques are given in [18, 19, 21]. However, if cooperativity is either
not given directly or cannot be achieved by these similarity transformations, the
following alternatives need to be exploited to determine guaranteed bounds for all
reachable states.

3.2 Transformation of Fractional Systems into Equivalent
Ordinary Differential Equations

Theorem 2 ([6] Solution of fractional-order differential equations by nonlinear
time transformations). Let f (z(t)) be a bounded and continuous function. The
solution to the time-invariant fractional-order differential equations considered in
Def. 2 according to

z(ν)(t) = f (z(t)) (16)

with the bounded initial conditions z(0) is given by

z(t) = z

(
tν

Γ (ν + 1)

)
, (17)

where z (τ) is determined as the solution to an initial value problem to the set of
integer-order differential equations

dz(τ)

dτ
= f (z(τ)) (18)

with the initial condition
z(0) = z(0) (19)

and the nonlinear time transformation

τ = t− (tν − τ · Γ (ν + 1))
1
ν (20)

leading to

f (z(τ)) = f
(
z
(
t− (tν − τ · Γ (ν + 1))

1
ν

))
, (21)

in which τ is the independent variable and t is considered as a parameter.

Although Theorem 2 provides a quite general approach that makes initial value
problem solvers originally developed for the case of integer-order differential equa-
tions applicable to the fractional-order case, it has two main drawbacks if uncer-
tain systems are concerned: First, the nonlinear time transformation according to
Theorem 2 leads to the fact that even for time-invariant system models, usually
time-varying initial value problems need to be solved. In the general case, this

30 Andreas Rauh and Julia Kersten

can only be done by augmenting the state vector by the time variable τ according
to the procedure discussed in [36], leading inevitably to an increase in the system
dimension. Second, this augmentation of the state vector as well as the required
backward transformation (17) of the computed solution usually introduce some ad-
ditional amount of overestimation due to multiple dependencies on common interval
variables.

Remark 3. The time-varying characteristics of the transformed system model
in (21) with (20) highlights the property of fractional-order differential equations,
that restarting the temporal solution procedure at some point of time T > 0 purely
on the basis of the novel initial conditions z(T) with simultaneously resetting the
time to zero would inevitably lead to truncation errors. Handling of these errors by
means of guaranteed error bounds on the derivative operator is discussed further
in Secs. 5 and 6 of this paper.

3.3 A Picard Iteration Procedure for Fractional-Order Dy-
namics

Theorem 3 ([1, 22] Integral formulation of Picard iterations for fractional-order
differential equations). Let f (z(t)) be a continuous Lipschitzian function on a
bounded state and time domain. The solution to the time-invariant fractional-
order differential equations considered in Def. 2 at the point of time T > 0 can be
computed iteratively according to the fixed-point iteration

z〈κ+1〉(T) := z(0) +
1

Γ(ν)
·

T∫
0

(T − s)
ν−1 · f

(
z〈κ〉(s)

)
ds , κ ∈ N0 , (22)

with the initialization z〈0〉 := z(0) at the iteration step κ = 0.

This iteration generalizes to interval bounded initial conditions z(0) ∈ [z] (0) =
[z0] according to

[z]
〈κ+1〉

:= [z0] +
1

Γ(ν + 1)
· [0 ; T ν] · f

(
[z]
〈κ〉

)
, κ ∈ N0 , (23)

where convergence requires [z]
〈κ+1〉 ⊆ [z]

〈κ〉
, leading to z(t) ∈ [z]

〈κ+1〉
for all t ∈

[0 ; T].

Theorem 3 provides the possibility to determine time-invariant bounds [z]
〈κ+1〉

containing all possible states z(t) that are reachable over the complete time in-
terval t ∈ [0 ; T]. However, the fact that these bounds are time-invariant makes
them excessively wide at the single point t = T . Hence, generalizations of this
iteration are derived in the following section to obtain time-varying bounds which
— for asymptotically stable dynamics — contract temporally towards the system’s
equilibrium state.

Interval-Based Simulation of Fractional-Order Systems 31

4 Interval-Based Iteration Procedure:
Generalization of Exponential State Enclosures
to Fractional-Order Systems

In this section, an interval-based iteration procedure is derived for the computation
of guaranteed state enclosures for fractional-order system models. To make this
paper self-contained, an already existing variant for integer-order models as well as
the initial work [33, 35] for the fractional-order case are briefly reviewed, before a
detailed discussion about specific extensions to the fractional-order case is provided.

4.1 Exponential State Enclosures for Integer-Order Ordi-
nary Differential Equations

Definition 3 (Exponential state enclosure). The time-dependent exponential en-
closure function

z∗(t) ∈ [ze] (t) := exp ([Λ] · t) · [ze] (0) , [ze] (0) = [z0] (24)

with the parameter matrix

[Λ] := diag {[λi]} , i ∈ {1, . . . , n} , (25)

is denoted as a verified exponential state enclosure for the system model (5) with (8)
if it is determined according to Theorem 4.

Theorem 4 ([36] Iteration for exponential state enclosures). The exponential state
enclosure (24) is guaranteed to contain the set of all reachable states z∗(T) at the
point of time t = T > 0 according to

z∗(T) ∈ [ze] (T) := exp ([Λ] · T) · [ze] (0) , (26)

if [Λ] is set to the outcome of the converging iteration

[λi]
〈κ+1〉

:=
fi

(
exp

(
[Λ]

〈κ〉 · [t]
)
· [ze] (0)

)
exp

(
[λi]

〈κ〉 · [t]
)
· [ze,i] (0)

, (27)

i ∈ {1, . . . , n}, with the prediction horizon [t] = [0 ; T].

Proof. Assume that the integral form of the Picard iteration, see [36] and Theorem 3
with ν = 1,

z∗(t) ∈ [ze]
〈κ+1〉

:= [ze] (0) +

t∫
0

f
(
[ze]

〈κ〉
(s)

)
ds (28)

describes a converging iteration that encloses the exact solution z∗(t) to the initial
value problem of an integer-order system as given in Def. 2 in terms of an outer

32 Andreas Rauh and Julia Kersten

interval hull over all possible state trajectories over the time horizon t ∈ [t] = [0 ; T]
with T > 0.

The evaluation of the iteration (28) for the ansatz of an exponential state en-
closure (24) with (25) according to Def. 3 yields the relation

z∗(t) ∈ exp
(
[Λ]

〈κ+1〉 · t
)
· [ze] (0)

= [ze] (0) +

t∫
0

f
(
exp

(
[Λ]

〈κ〉 · s
)
· [ze] (0)

)
ds

(29)

between the interval matrices [Λ]
〈κ〉

and [Λ]
〈κ+1〉

for the two subsequent iteration
steps κ and κ + 1. The differentiation of (29) with respect to time results in the
differential form of the Picard iteration which is given by

ż∗(t) ∈ [Λ]
〈κ+1〉 · exp

(
[Λ]

〈κ+1〉 · t
)
· [ze] (0)

= f
(
exp

(
[Λ]

〈κ〉 · t
)
· [ze] (0)

)
= f

(
[ze]

〈κ〉
(t)

) (30)

with its corresponding interval extension for the complete prediction window [t]
according to

ż∗([t]) ∈ [Λ]
〈κ+1〉 · [ze]〈κ+1〉

([t]) = f
(
[ze]

〈κ〉
([t])

)
. (31)

All equivalent expressions (29)–(31) describe a converging iteration process if

[λi]
〈κ+1〉 ⊆ [λi]

〈κ〉
(32)

and hence
[Λ]

〈κ+1〉 ⊆ [Λ]
〈κ〉

(33)

are satisfied. Due to inclusion monotonicity [16] of the exponential function, the
relations (32) and (33) imply

exp
(
[Λ]

〈κ+1〉 · t
)
⊆ exp

(
[Λ]

〈κ〉 · t
)

(34)

for all t ∈ [t]. Overapproximating the left-hand side of (31), cf. [33, 36], in a
conservative manner with an interval

[λi]
〈κ+1〉 ⊆ [λ̃i]

〈κ+1〉 ⊆ [λi]
〈κ〉

(35)

according to

diag
{
[λ̃i]

〈κ+1〉
}
· [ze]〈κ〉 ([t]) =: f

(
[ze]

〈κ〉
([t])

)
(36)

and solving the equality in (36) for the yet unknown bounds [λ̃i]
〈κ+1〉 with subse-

quently renaming this parameter into [λi]
〈κ+1〉

completes the proof.

Interval-Based Simulation of Fractional-Order Systems 33

For further discussions concerning the necessary zero-exclusion requirement
0 �∈ [ze,i] ([t]) for all components i ∈ {1, . . . , n} of the state vector as well as for
generalizations to multiple real and/or complex eigenvalues, the reader is referred
to [36]. Fundamental step-size control strategies and the definition of time-varying
transformation matrices leading to less conservative quasi-linear system models
than those in Def. 2 are given in [19].

Corollary 2. For quasi-linear state-space representations according to Def. 1,
which are transformed into the diagonally dominant form of Def. 2, the component-
wise notation

żi(t) = fi (z(t)) =

n∑
j=1

aij (z(t)) · zj(t) (37)

of the state equations allows for a reduction of interval-related dependency prob-
lem, the wrapping effect, and the resulting computational effort if formula (27) is
reformulated symbolically into

[λi]
〈κ+1〉

:= aii

(
[ze]

〈κ〉
([t])

)
+

n∑
j=1
j �=i

{
aij

(
[ze]

〈κ〉
([t])

)
· e(([λj]

〈κ〉−[λi]
〈κ〉)·[t]) · [ze,j] (0)

[ze,i] (0)

}
.

(38)

4.2 Mittag-Leffler Type State Enclosures for Fractional-Or-
der Differential Equations

The focus of this subsection is the generalization of the exponential enclosure tech-
nique to sets of commensurate fractional-order models. The fundamental iteration
summarized in the following Theorem 5 was first published by the authors in [33]
and [35]. The novelty of the present paper is the detailed description of relations
to the state-of-the-art approaches in Sec. 3 and the in-depth discussion of interval-
based numerical evaluation schemes together with the reliable consideration of the
infinite-horizon memory property that becomes crucial as soon as the integration
time horizon is divided into several temporal subslices of finite duration.

Definition 4 (Mittag-Leffler type state enclosure). The time-dependent Mittag-
Leffler type enclosure function

z∗(t) ∈ Eν,1([Λ] · tν) · [ze] (0) , [ze] (0) = [z0] (39)

with the diagonal parameter matrix [Λ] := diag {[λi]}, i ∈ {1, . . . , n}, is denoted as
a verified Mittag-Leffler type state enclosure for the system model (6) with (8) if
it is determined according to Theorem 5.

Theorem 5 ([33, 35] Iteration for Mittag-Leffler type enclosures). The Mittag-
Leffler type state enclosure (39) is guaranteed to contain the set of all reachable
states z∗(T) at the point of time t = T > 0 according to

z∗(T) ∈ Eν,1([Λ] · T ν) · [ze] (0) , (40)

34 Andreas Rauh and Julia Kersten

if [Λ] is set to the outcome of the converging iteration

[λi]
〈κ+1〉

:=
fi

(
Eν,1

(
[Λ]

〈κ〉 · [t]ν
)
· [ze] (0)

)
Eν,1

(
[λi]

〈κ〉 · [t]ν
)
· [ze,i] (0)

, (41)

i ∈ {1, . . . , n}, with the prediction horizon [t] = [0 ; T].

Proof. According to [7,11], the exact solution of a linear fractional-order differential
equation

z(ν)(t) = λ · z(t) (42)

of Caputo type — for which only the initial conditions of the system states at t = 0
are specified — is given by the analytic expression

z(t) = Eν,1 (λt
ν) · z(0) . (43)

As for the case of integer-order differential equations, this relation serves as an
ansatz for describing verified state enclosures. By substituting it (cf. (30) in Theo-
rem 5) into the differential formulation of the Picard iteration, which results from
determining the fractional-order time derivative of the result in Theorem 3, the
expression

z(ν)(t) ∈
(
[Λ]

〈κ+1〉
)
·Eν,1

(
[Λ]

〈κ+1〉 · tν
)
· [ze] (0)

= f
(
Eν,1

(
[Λ]

〈κ〉 · tν
)
· [ze] (0)

)
=: f

(
[ze]

〈κ〉
([t])

) (44)

is obtained.
Overapproximating the Mittag-Leffler type state enclosure Eν,1

(
[Λ]

〈κ+1〉 · tν
)

in the iteration step κ + 1 by the enclosure [ze]
〈κ〉

([t]) obtained in the previous
iteration step on the left-hand side of (44), as it was also done in the proof of
Theorem 4 for the integer-order counterpart, leads to

diag
{
[λ̃i]

〈κ+1〉
}
· [ze]〈κ〉 ([t]) = f

(
[ze]

〈κ〉
([t])

)
. (45)

Solving this expression for [λ̃i]
〈κ+1〉 with subsequently renaming this parameter

into [λi]
〈κ+1〉

completes the proof of Theorem 5.

Corollary 3. Quasi-linear state-space representations of fractional-order differen-
tial equations in diagonally dominant form according to Def. 2 can be simulated
efficiently by the symbolically simplified iteration scheme

[λi]
〈κ+1〉

:= aii

(
[ze]

〈κ〉
([t])

)
+

n∑
j=1
j �=i

⎧⎨⎩aij

(
[ze]

〈κ〉
([t])

)
·
Eν,1

(
[λj]

〈κ〉 · [t]ν
)

Eν,1

(
[λi]

〈κ〉 · [t]ν
) · [ze,j] (0)

[ze,i] (0)

⎫⎬⎭ .
(46)

Interval-Based Simulation of Fractional-Order Systems 35

Remark 4. In contrast to Eq. (38) derived for integer-order systems, where ana-
lytic simplifications of exponential functions become possible, the quotient of two
Mittag-Leffler functions in (46) cannot be simplified further in the general case.
This imposes further restrictions on the numerical evaluation of (46) using tech-
niques from interval arithmetic in the following section.

Remark 5. For the order ν = 1, the iteration formulas in Theorems 4 and 5
become identical due to E1,1(z) ≡ ez.

5 Evaluating Mittag-Leffler Functions for Interval
Arguments

As described in [14], rough (outer) bounds for the evaluation of Mittag-Leffler
functions with (real-valued) interval arguments can be determined by exploiting
the property of a continuous interpolation between Gaussian (exponential) and
Lorentzian (rational) functions according to

exp (−ζ) < Eν,1 (−ζ) ≤ 1

1 + ζ
, ζ ≥ 0 (47)

in Fig. 1a and

exp
(−ζ2) < Eν,1

(−ζ2) ≤ 1

1 + ζ2
, ζ ≥ 0 (48)

in Fig. 1b. However, if only subintervals from the range ν ∈ [0 ; 1] are required
for a specific application scenario, these bounds are usually too conservative for
the interval-based evaluation of the iteration formulas presented in the previous
section.

Therefore, floating point evaluations of the Mittag-Leffler function using the
Matlab implementation of R. Garrappa [10] are extended in the following subsec-
tions to obtain tight guaranteed interval bounds for the case of real-valued argu-
ments. The case of complex interval arguments is a topic for future research.

5.1 Interval Evaluation of the Two-Parameter Mittag-Leffler
Function with Real Arguments

Theorem 6 ([35] Interval bounds for the Mittag-Leffler function with real argu-
ments). Interval evaluations of Mittag-Leffler functions with real-valued arguments
z ∈ [z] = [z ; z] are given by

Eν,β ([z]) ∈
[
E∗ν,β ([z])

]
=
[
Ẽν,β ([z])

]
+

ε

1 + ε
·
(
1 +

∣∣∣[Ẽν,β ([z])
]∣∣∣) · [−1 ; 1] (49)

with the tolerance value ε of a floating point function evaluation of (1) and the
interval definition [

Ẽν,β ([z])
]
=
[
�Ẽν,β (z) ; 	Ẽν,β (z)

]
, (50)

36 Andreas Rauh and Julia Kersten
E

ν,
1
(−

ζ
)

ζ
ν

0

0.4

0.2

1.0

0 2 4 6 108
0

0.2

0.4

0.6

0.8

1.0

1
1+ζ

exp(−ζ)

0.6

0.8

(a) Bounds for the Mittag-Leffer according
to (47).

ζ

E
ν,
1
(−

ζ
2
) ν

0

0.4

0.2

1.0

0 2 4 6 108
0

0.2

0.4

0.6

0.8

1.0

1
1+ζ2

exp(−ζ2)

0.6

0.8

(b) Bounds for the Mittag-Leffer according
to (48).

Figure 1: Guaranteed bounds for Mittag-Leffler functions for the parameter range
ν ∈ [0 ; 1], where the Lorentzian upper bound is highlighted by the dashed line
and the gray color code visualizes the dependence on ν.

where � and 	 denote switchings of the rounding mode of a CPU towards minus
and plus infinity, respectively, in the corresponding floating point evaluations.

Proof. The interval extension (50) directly results form the strict monotonicity of
the two-parameter Mittag-Leffler function with real-valued arguments. Moreover,
a guaranteed tolerance value ε (ε ≈ 10−15 for the case of the implementation by
R. Garrappa [10]) allows to express the relative deviation between the floating point
approximation Ẽν,β(z) and the exact function value Eν,β(z) at some value z ∈ R,
representable in floating point arithmetic, according to∣∣∣Eν,β(z)− Ẽν,β(z)

∣∣∣
1 + |Eν,β(z)| =

|Δ|
1 +

∣∣∣Ẽν,β(z) + Δ
∣∣∣ ≤ ε . (51)

Solving the inequality (51) for |Δ| relies on the fact that

|Δ|
1 +

∣∣∣Ẽν,β(z) + Δ
∣∣∣ ≤ |Δ|

1 +
∣∣∣Ẽν,β(z)

∣∣∣− |Δ| (52)

holds. Assuming
|Δ|

1 +
∣∣∣Ẽν,β(z)

∣∣∣− |Δ| ≤ ε (53)

in correspondence with (51) leads to the inequality

|Δ| ≤ ε

1 + ε
·
(
1 +

∣∣∣Ẽν,β(z)
∣∣∣) (54)

Interval-Based Simulation of Fractional-Order Systems 37

which characterizes the interval bounds [−1 ; 1] · |Δ| of the worst-case approxi-
mation error. Adding this tolerance interval to the outward rounded point-valued
evaluation of the Mittag-Leffler function in Eq. (50) completes the proof of Theo-
rem 6.

5.2 Exploitation of Monotonicity in Interval Evaluations of
the Mittag-Leffler Function

To reduce overestimation in the interval evaluation of the iteration procedure ac-
cording to Theorem 5, monotonicity properties of the Mittag-Leffer function with
respect to the time t, the solution parameter λ as well as to a derivative order ν
specified as an interval variable are investigated in this section.

Theorem 7 ([35] Monotonicity-based interval bounds for the Mittag-Leffler func-
tion). The range of function values for the Mittag-Leffler function with the uncer-
tain real-valued parameters ν ∈ [ν ; ν], 0 < ν ≤ 1, 0 < ν ≤ 1 and λ ∈ [

λ ; λ
]
,

λ < 0 and the non-negative time argument t ∈ [
t ; t

]
, t ≥ 0, can be bounded tightly

according to the interval enclosure

Eν,1 (λt
ν) ∈

[
E∗ν,1 (inf ([X])) ; E∗ν,1 (sup ([X]))

]
(55)

with [X] := [λ] · [t][ν], where sup ([X]) ≤ 0 holds.

If monotonicity with respect to ν can be proven additionally, the relation sim-
plifies to

Eν,1 (λt
ν) ∈

[
E∗ν,1

(
λ · tν

)
; E∗ν,1

(
λ · tν)] (56)

for the monotonically decreasing branch in ν and to

Eν,1 (λt
ν) ∈

[
E∗ν,1

(
λ · tν) ; E∗ν,1 (λ · tν)] (57)

for the increasing branch; the change of monotonicity occurs on the surface depicted
in Fig. 2.

Proof. Formula (55) is a direct consequence of the continuous interpolation prop-
erty of Mittag-Leffler functions between Gaussian and Lorentzian functions, see the
beginning of Sec. 5 and [12, 24]. For a proof of monotonicity with respect to t, λ,
and ν, see [35].

Remark 6. For intervals [ν], [λ], and [t] which do not intersect with the surface
depicted in Fig. 2, the Eq. (56) holds for ν values below the surface (monotonically
decreasing) and (57) for values above (monotonically increasing); otherwise (55)
must be applied.

38 Andreas Rauh and Julia Kersten

λ

t

ν

0 0.1 0.2

−2

−10
−60.2

0.6

1.0

Figure 2: Surface, where the Mittag-Leffler function Eν,1 (λt
ν) changes its mono-

tonicity with respect to ν.

5.3 Interval Bounds for Temporal Truncation Errors due to
the Infinite Memory Property of Fractional-Order Sys-
tems

It is well known that fractional-order system models are characterized by an infinite
memory of previous states [27,30]. Hence, restarting a simulation at some point of
time t = tk+1 on the basis of state information z(tk+1) computed by a simulation
that was originally initiated at some point tk < tk+1 does not only have to account
for these new initial conditions3. It also needs to consider the effect of temporal
truncation errors which can be expressed by component-wise error bounds resulting
from the fact that a fractional-order derivative of order ν with a memory start at
t = tk is replaced with a new starting point t = tk+1. The corresponding derivative
operators are subsequently denoted by tkDν

t z(t) and tk+1
Dν

t z(t), respectively.

Theorem 8 (Bounds for temporal truncation errors). Resetting the initial point
of time of the integration of fractional-order models defined in Def. 2 based on
Theorem 5 after completion of a time interval of length T requires the inflation of
the right-hand side of the state equations by the symmetric interval [−μ ; μ] at the
point T with

μ :=
Z · (tk + T)

−ν

|Γ(1− ν)| (58)

3For the sake of compactness, the notation in this subsection is based on Def. 2. A transfer
towards Def. 1 solely requires to replace all occurrences of the vectors z(t) with their counterpart
x(t).

Interval-Based Simulation of Fractional-Order Systems 39

and the component-wise defined supremum of the set of reachable states

Zi = sup
t∈[t0 ; tk+1]

|zi(t)| . (59)

The re-initialized initial value problem is then given by

tk+TDν
t z(t) = z(ν)(t) = f (z(t)) + [−μ ; μ] =: f̃ (z(t)) (60)

with the initial state enclosure z(tk + T) ∈ [z] (tk + T) resulting form the solution
of

t0Dν
t z(t) = z(ν)(t) = f (z(t)) with z(t0) ∈ [z] (t0) , t0 = 0 . (61)

Proof. Theorem 8 is a consequence of the component-wise defined error bounds for
a general fractional derivative operator of a commensurate system model on the
time interval tk + T ≤ t ≤ tk+1 that can be computed according to [30] by

|tkDν
t z(t)− tk+TDν

t z(t)| ≤
ZT−ν

|Γ(1− ν)| =: μ (62)

As presented in [30], Eq. (62) relies on the component-wise defined supremum (59)
of the reachable states denoted by the vector Z.

A visualization of this state resetting procedure, with a corresponding adjust-
ment of the right-hand side of the set of state equations is given in the following
section. The following section accounts both for linear and nonlinear system mod-
els, as well as for a first possibility to interface the bounding approach according
to Eq. (62) with a contractor technique [16] applied to the solution parameters
[λi] that for some system models yields tighter bounds than those given purely by
applying the iteration of Theorem 5 after inflating the right-hand sides of the state
equation with the vector μ. The reason for these possible enhancements can be
seen in the fact that the original bound μ captures an infinitely long time window
starting at t = tk, while in many practical scenarios much shorter windows are
sufficient for the reliable forecast of the set of all possible state trajectories.

Theorem 9 (Contractor for the state enclosure of fractional-order systems). As-
sume that a reference solution z(t) ∈ [zref] (t) has already been computed for the
initial value problem with the initial point of time t = tk that is valid up to the
point t = t∗ > tk + T and that the application of Theorem 5 to the re-initialized
initial value problem (60) in Theorem 8 with the initial point of time t = tk+T has
provided the interval bounds [ze] (t) = exp ([Λ] · (t− (tk + T)))·[ze] (tk + T) that are
also valid up to t = t∗ with the associated solution parameters [λi], i ∈ {1, . . . , n},
a contractor is given by

[λi] := [λi] ∩ [λ̃i] (63)

with

[λ̃i] =
f̃i ([ze] ([tk + T ; t∗])) ∩ f̃i ([zref] ([tk + T ; t∗]))

[ze,i] ([tk + T ; t∗]) ∩ [zi,ref] ([tk + T ; t∗])
. (64)

40 Andreas Rauh and Julia Kersten

Proof. The validity of Theorem 9 is a direct consequence of the fact that both
[zref] (t) and [ze] (t) are verified state enclosures according to z(t) ∈ [zref] (t) and
z(t) ∈ [ze] (t) and, thus, have to satisfy the fractional-order differential equation in
the componentwise notation (44). Intersecting the evaluation of (44) for both state
enclosures after consideration of the error bounds μ for the corresponding point of
restart and solving the result for the interval of the solution parameter [λ̃i] yields
the relation (64).

6 Illustrating Examples

6.1 Visualization of Interval Bounds for Temporal Trunca-
tion Errors of Linear Fractional-Order Systems

To visualize the influence of temporal truncation errors on the solution quality,
consider the Caputo type linear fractional-order differential equation

z(ν)(t) = −z(t) (65)

with the differentiation order ν = 0.5 as well as the initial state z(0) = 1. According
to (42) and (43) its exact solution is given by

z(t) = E0.5,1

(−t0.5) for t ≥ 0 . (66)

This solution is visualized in Fig. 3.
In addition, assume that the overall integration time horizon t ∈ [0 ; Tf] with

Tf = 10 for this system is split into N equidistant slices [τk] := [tk−1 ; tk] with
t0 = 0 and tk = k · Tf

N , k ∈ {1, . . . , N}. Neglecting the infinite-time horizon memory
of this system, approximate solutions z̃(t) are computed recursively by means of

z̃(t) =

(
E0.5,1

(
−
(
Tf

N

)0.5
))k−1

· E0.5,1

(
− (t− tk−1)

0.5
)

, (67)

where z̃(0) = z(0) and t ∈ [τk]. As shown in Fig. 3, the quality of these approxi-
mations becomes worse, the larger the value N is chosen.

To quantify the effect of the infinite-horizon memory, the error quantification
according to Sec. 5.3 is included in the iteration scheme for determining the param-
eter [λ] according to Theorem 5. It becomes obvious that the interval enclosures
included in Fig. 4 for the time steps k ≥ 2 contain the exact solution to the initial
value problem. Note, the computation of the parameter enclosures [λ] according
to Theorem 5 was interfaced with intersecting the iteration result with a further
conservative expression obtained by

[λ̃] :=
− [ze] ([τk]) + [−1 ; 1] · μ(tk−1)(

E0.5,1

(
− [τk]

0.5
)
· [1− η ; 1 + η]

)
∩ [ze] ([τk])

, 0 < η < 1 , (68)

as a special case of Theorem 9, where the numerator directly results from computing
the state enclosure as shown in (41) and the denominator includes some a-priori
knowledge on the domain of reachable states in the time interval [τk].

Interval-Based Simulation of Fractional-Order Systems 41

t

z(
t)

0
0

0.4

0.2

0.6

1.0

0.8

exact solution (66)

2 4 6 8 10

N = 10
N = 100

Figure 3: Visualization of truncation errors resulting from the infinite-horizon mem-
ory effect of fractional-order systems.

t

z(
t)

0

1.0

2 4 6 8 10

exact solution (66)

0.2

0

0.4

0.6

0.8

Figure 4: Interval-based quantification of truncation errors resulting from the
infinite-horizon memory effect of fractional-order systems with η = 0.1.

42 Andreas Rauh and Julia Kersten

6.2 A Nonlinear Example: Interval Bounds for Different In-
tegration Horizons

As a second, nonlinear example for the application of Theorem 5, the state equation

z(ν)(t) = p · z3(t) = p · a(z(t)) · z(t) (69)

with an uncertain initial state z(0) ∈ [z] (0), the interval parameter p ∈ [p], and
the uncertain differentiation order ν ∈ [ν] is considered. Note that Eq. (69) already
includes the reformulation into a quasi-linear system model so that the modified
iteration formula (46) becomes applicable.

In the following, two cases differing in the amount of uncertainty according to

Case a: [z] (0) = [0.99 ; 1.0], [p] = [−2 ; −1.99], [ν] = [0.8 ; 0.81]

and

Case b: [z] (0) = [0.5 ; 1.0], [p] = [−2 ; −1], [ν] = [0.8 ; 0.9]

are distinguished for this example.
Using the integration time horizons T ∈ {0.25, 0.50, 1.0} for both Case a and

Case b, without restarting the integration at any point in the interior of the
temporal window t ∈ [0 ; T], the state enclosures in Figs. 5a and 5b are obtained.
It can be noticed that for both cases the iteration describes non-diverging state
enclosures despite the fact that constant parameter bounds [λ] were determined for
the complete integration time horizons. Both, for small uncertainty levels in Fig. 5a
and large uncertainty in Fig. 5b, these computed interval bounds become wider for
increasing lengths of the integration horizon, due to the fact that solutions close
to the steady state need to be incorporated. This statement can also be verified
by investigating the numerical parameter values produced by Theorem 5 (listed in
ascending order of T) for

Case a: [λ] ∈ {[−2.0001 ; −0.5261], [−2.0001 ; −0.2276], [−2.0001 ; −0.0684]}
as well as for

Case b: [λ] ∈ {[−2.0001 ; −0.0667], [−2.0001 ; −0.0270], [−2.0001 ; −0.0066]}.
Considering again the Case a, a restart of the integration is now performed

at the points tk ∈ {0.25, 0.50, 0.75}. The resulting state enclosure, including a
comparison with the bounds obtained for a single time window of length T = 1 are
shown in Fig. 5c. Here, the contractor introduced in Theorem 9 has the form

[λ̃] :=
−p ·

(
[ze] ([τk]) ∩ [zref] ([τk])

)3

+ [−1 ; 1] · μ(tk−1)

[ze] ([τk]) ∩ [zref] ([τk])
, (70)

where [zref] ([τk]) is the evaluation of the enclosure function obtained for the overall
time window without any temporal discretization. It can be seen that the subdi-
vision of the time window (T = 1) leads to a noticeable reduction of the computed

Interval-Based Simulation of Fractional-Order Systems 43
[z
](
t)

t

0
0

0.4

0.2

0.6

1.0

0.8

0.2 0.4 0.6 0.8 1.0

(a) State enclosures for Case a.
[z
](
t)

t

0
0

0.4

0.2

0.6

1.0

0.8

0.2 0.4 0.6 0.8 1.0

(b) State enclosures for Case b.

[z
](
t)

t

0
0

0.4

0.2

0.6

1.0

0.8

0.2 0.4 0.6 0.8 1.0

(c) State enclosures for Case a, including a
restart of the integration at the points tk ∈
{0.25, 0.50, 0.75}.

Figure 5: Guaranteed state enclosures for different integration horizons T ∈
{0.25, 0.50, 1.0} and different levels of uncertainty.

interval widths. Future work will aim at the development of further contractor ap-
proaches, allowing both for a refinement of the bounds μ and for incorporating sim-
ulations computed over long time windows as some kind of measured state enclosure
as it would be done in the frame of an interval-based state observer synthesis. To
perform a comparison with the parameter bounds listed above, the following results
were obtained: [λ] ([τ1]) ∈ [−2.0001 ; −0.5261], [λ] ([τ2]) ∈ [−3.3658 ; −0.0121],
[λ] ([τ3]) ∈ [−2.6236 ; −0.0064], and [λ] ([τ4]) ∈ [−2.1951 ; −0.0035] with [τ1] =
[0 ; 0.25], [τ2] = [0.25 ; 0.50], [τ3] = [0.50 ; 0.75], and [τ4] = [0.75 ; 1.0].

44 Andreas Rauh and Julia Kersten

7 Conclusions and Outlook on Future Work

In this paper, extensions of an interval-based exponential enclosure technique orig-
inally developed for integer-order sets of ordinary differential equations were pre-
sented to obtain a novel Mittag-Leffler function-based generalization valid also for
explicit, continuous-time sets of fractional-order differential equations. This type
of iteration was first discussed by the authors in [33,35], however, without account-
ing for the practically necessary extension towards the use of temporal subinter-
vals. The corresponding time discretization scheme requires the quantification of
truncation errors — which are caused by the infinite-horizon memory effects of
fractional-order systems — and which do not exist for classical ordinary differential
equations.

A first implementation of the novel routine for quantifying these error bounds,
has been presented and interfaced for the first time with a contractor approach that
further allows for reducing conservativeness of the obtained solution sets.

Future work will deal with a generalization of the iteration scheme to system
models with an oscillatory behavior, for which it seems to be reasonable that
complex-valued state enclosures are determined as it was already demonstrated
for the case of the integer-order counterpart [36]. Moreover, possible strategies
for determining optimal subdivision strategies of the investigated integration time
horizons — with the aim of minimizing the computed interval diameters — will be
investigated.

References

[1] Amairi, M., Aoun, M., Najar, S., and Abdelkrim, M.N. A constant enclosure
method for validating existence and uniqueness of the solution of an initial
value problem for a fractional differential equation. Applied Mathematics and
Computation, 217(5):2162–2168, 2010. DOI: 10.1016/j.amc.2010.07.015.

[2] Andre, D., Meiler, M., Steiner, K., Wimmer, Ch., Soczka-Guth, T., and Sauer,
D.U. Characterization of High-Power Lithium-Ion Batteries by Electrochemi-
cal Impedance Spectroscopy. I. Experimental Investigation. Journal of Power
Sources, 196(12):5334–5341, 2011. DOI: 10.1016/j.jpowsour.2010.12.102.

[3] Bel Haj Frej, G., Malti, R., Aoun, M., and Räıssi, T. Fractional Inter-
val Observers And Initialization Of Fractional Systems. Communications
in Nonlinear Science and Numerical Simulation, 82:105030, 2020. DOI:
10.1016/j.cnsns.2019.105030.

[4] Chen, Y. Oustaloup-Recursive-Approximation for Fractional Order Differen-
tiators. MATLAB Central File Exchange. www.mathworks.com/matlabcent

ral/fileexchange/3802-oustaloup-recursive-approximation-for-fra

ctional-order-differentiators, accessed: Aug. 14, 2020.

Interval-Based Simulation of Fractional-Order Systems 45

[5] Craiem, D. and Magin, R. Fractional Order Models of Viscoelasticity as an
Alternative in the Analysis of Red Blood Cell (RBC) Membrane Mechanics.
Physical Biology, 7:13001, 03 2010. DOI: 10.1088/1478-3975/7/1/013001.

[6] Demirci, E. and Ozalp, N. A method for solving differential equations
of fractional order. Journal of Computational and Applied Mathematics,
236(11):2754–2762, 2012. DOI: 10.1016/j.cam.2012.01.005.

[7] Dorjgotov, K., Ochiai, H., and Zunderiya, U. On Solutions of Linear Fractional
Differential Equations and Systems Thereof. 2018. arXiv:1803.09063.

[8] Efimov, D., Räıssi, T., Chebotarev, S., and Zolghadri, A. Interval State Ob-
server for Nonlinear Time Varying Systems. Automatica, 49(1):200–205, 2013.
DOI: 10.1016/j.automatica.2012.07.004.

[9] El-Khazali, R., Batiha, I.M., and Momani, S. Approximation of fractional-
order operators. In Agarwal, P., Baleanu, D., Chen, Y., Momani, S., and
Machado, J.A.T., editors, Fractional Calculus. ICFDA 2018. Springer Proceed-
ings in Mathematics & Statistics, vol. 303, pages 121–151, Singapore, 2019.
Springer Singapore. DOI: 10.1007/978-981-15-0430-3_8.

[10] Garrappa, R. Numerical Evaluation of Two and Three Parameter Mittag-
Leffler Functions. SIAM Journal on Numerical Analysis, 53(3):1350–1369,
2015. DOI: 10.1137/140971191.

[11] Ghosh, U., Sarkar, S., and Das, S. Solution of System of Linear Fractional
Differential Equations with Modified Derivative of Jumarie Type. American
Journal of Mathematical Analysis, 3(3):72–84, 2015. DOI: 10.12691/ajma

-3-3-3.

[12] Gorenflo, R., Kilbas, A.A., Mainardi, F., and Rogosin, S.V. Mittag-Leffler
Functions, Related Topics and Applications. Springer–Verlag, Berlin, Heidel-
berg, 2014. DOI: 10.1007/978-3-662-43930-2.

[13] Gorenflo, R., Loutchko, J., and Luchko, Y. Computation of the Mittag-Leffler
Function and its Derivatives. Fractional Calculus & Applied Analysis (FCAA),
5(4):491–518, 2002.

[14] Haubold, H.J., Mathai, A.M., and Saxena, R.K. Mittag-Leffler Functions and
Their Applications. Journal of Applied Mathematics, 2011:51 pages, 2011.
DOI: 10.1155/2011/298628.

[15] Hildebrandt, E., Kersten, J., Rauh, A., and Aschemann, H. Robust Inter-
val Observer Design for Fractional-Order Models with Applications to State
Estimation of Batteries. In Proc. of the 21st IFAC World Congress, Berlin,
Germany, 2020.

[16] Jaulin, L., Kieffer, M., Didrit, O., and Walter, É. Applied Interval Analysis.
Springer–Verlag, London, 2001. DOI: 10.1007/978-1-4471-0249-6.

46 Andreas Rauh and Julia Kersten

[17] Kaczorek, T. Positive 1D and 2D Systems. Springer–Verlag, London, 2002.
DOI: 10.1007/978-1-4471-0221-2.

[18] Kersten, J., Rauh, A., and Aschemann, H. State-Space Transformations of
Uncertain Systems with Purely Real and Conjugate-Complex Eigenvalues into
a Cooperative Form. In Proc. of 23rd Intl. Conference on Methods and Models
in Automation and Robotics, Miedzyzdroje, Poland, 2018. DOI: 10.1109/MM

AR.2018.8486085.

[19] Kersten, J., Rauh, A., and Aschemann, H. Application-Based Discussion
of Verified Simulations of Interval Enclosure Techniques. In Proc. of 24th
Intl. Conference on Methods and Models in Automation and Robotics, Miedzyz-
droje, Poland, 2019. DOI: 10.1109/MMAR.2019.8864673.

[20] Kersten, J., Rauh, A., and Aschemann, H. Transformation of Uncertain Linear
Fractional Order Differential Equations into a Cooperative Form. In Proc. of
the 8th IFAC Symposium on Mechatronic Systems (MECHATRONICS 2019)
and the 11th IFAC Symposium on Nonlinear Control Systems (NOLCOS
2019), Vienna, Austria, 2019. DOI: 10.1016/j.ifacol.2019.12.035.

[21] Kersten, J., Rauh, A., and Aschemann, H. Application-Based Analysis of
Transformations of Uncertain Dynamical Systems Into a Cooperative Form.
Reliable Computing, 2020. Under review.

[22] Lyons, R., Vatsala, A.S., and Chiquet, R. Picard’s Iterative Method for Caputo
Fractional Differential Equations with Numerical Results. Mathematics, 5(4),
2017. DOI: 10.3390/math5040065.

[23] Malti, R. and Victor, S. CRONE Toolbox for System Identification Using
Fractional Differentiation Models. In Proc. of 17th IFAC Symposium on System
Identification SYSID 2015, volume 48, pages 769–774, 2015. DOI: 10.1016/

j.ifacol.2015.12.223.

[24] Miller, K.S. and Samko, S.G. A Note on the Complete Monotonicity of the
Generalized Mittag-Leffler Function. Real Analysis Exchange, 23(2):753–756,
1997-98. DOI: 10.2307/44153996.

[25] Müller, M. Über die Eindeutigkeit der Integrale eines Systems gewöhnlicher
Differenzialgleichungen und die Konvergenz einer Gattung von Verfahren zur
Approximation dieser Integrale. In Sitzungsbericht Heidelberger Akademie der
Wissenschaften, 1927. In German.

[26] Nedialkov, N.S. Interval Tools for ODEs and DAEs. In CD-Proc. of 12th
GAMM-IMACS Intl. Symposium on Scientific Computing, Computer Arith-
metic, and Validated Numerics SCAN 2006, Duisburg, Germany, 2007. IEEE
Computer Society. DOI: 10.1109/SCAN.2006.28.

[27] Oustaloup, A. La Dérivation Non Entière: Théorie, Synthèse et Applications.
Hermès, Paris, 1995. In French.

Interval-Based Simulation of Fractional-Order Systems 47

[28] Oustaloup, A., Levron, F., Mathieu, B., and Nanot, F. M. Frequency-Band
Complex Noninteger Differentiator: Characterization and Synthesis. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, 47(1):25–39, 2000. DOI: 10.1109/81.817385.

[29] Papoulia, K., Panoskaltsis, V., Kurup, N., and Korovajchuk, I. Rheological
Representation of Fractional Order Viscoelastic Material Models. Rheologica
Acta, 49:381–400, 04 2010. DOI: 10.1007/s00397-010-0436-y.

[30] Podlubny, I. Fractional Differential Equations: An Introduction to Fractional
Derivatives, Fractional Differential Equations, to Methods of Their Solution
and Some of Their Applications. Mathematics in Science and Engineering.
Academic Press, London, 1999. DOI: 10.1016/s0076-5392(99)x8001-5.

[31] Räıssi, T. and Efimov, D. Some Recent Results on the Design and Implementa-
tion of Interval Observers for Uncertain Systems. at-Automatisierungstechnik,
66(3):213–224, 2018. DOI: 10.1515/auto-2017-0081.

[32] Räıssi, T., Efimov, D., and Zolghadri, A. Interval State Estimation for a Class
of Nonlinear Systems. IEEE Transactions on Automatic Control, 57:260–265,
2012. DOI: 10.1109/TAC.2011.2164820.

[33] Rauh, A., Kersten, J., and Aschemann, H. Techniques for Verified Reach-
ability Analysis of Quasi-Linear Continuous-Time Systems. In Proc. of 24th
Intl. Conference on Methods and Models in Automation and Robotics, Miedzyz-
droje, Poland, 2019. DOI: 10.1109/MMAR.2019.8864648.

[34] Rauh, A., Kersten, J., and Aschemann, H. Interval and Linear Matrix Inequal-
ity Techniques for Reliable Control of Linear Continuous-Time Cooperative
Systems with Applications to Heat Transfer. International Journal of Control,
pages 1–18, 2020. DOI: 10.1080/00207179.2019.1708966, Available online.

[35] Rauh, A., Kersten, J., and Aschemann, H. Interval-Based Verification Tech-
niques for the Analysis of Uncertain Fractional-Order System Models. In
Proc. of the 18th European Control Conference ECC2020, St. Petersburg, Rus-
sia, 2020.

[36] Rauh, A., Westphal, R., Aschemann, H., and Auer, E. Exponential Enclo-
sure Techniques for Initial Value Problems with Multiple Conjugate Complex
Eigenvalues. In Nehmeier, M., von Gudenberg, J. Wolff, and Tucker, W.,
editors, Scientific Computing, Computer Arithmetic, and Validated Numer-
ics, pages 247–256, Cham, 2016. Springer International Publishing. DOI:
10.1007/978-3-319-31769-4_20.

[37] Smith, H.L. Monotone Dynamical Systems: An Introduction to the Theory of
Competitive and Cooperative Systems, volume 41. Mathematical Surveys and
Monographs, American Mathematical Soc., Providence, 1995.

48 Andreas Rauh and Julia Kersten

[38] Wang, B., Liu, Z., Li, S., Moura, S., and Peng, H. State-of-Charge Estimation
for Lithium-Ion Batteries Based on a Nonlinear Fractional Model. IEEE Trans.
on Control Systems Technology, 25(1):3–11, 2017. DOI: 10.1109/TCST.2016.

2557221.

[39] Zou, Ch., Zhang, L., Hu, X., Wang, Z., Wik, T., and Pecht, M. A Review
of Fractional-Order Techniques Applied to Lithium-Ion Batteries, Lead-Acid
Batteries, and Supercapacitors. Journal of Power Sources, 390:286–296, 2018.
DOI: 10.1016/j.jpowsour.2018.04.033.

Acta Cybernetica 25 (2021) 49–68.

Confidence-based Contractor, Propagation and

Potential Clouds for Differential Equations∗

Julien Alexandre dit Sandrettoa

Abstract

A novel interval contractor based on the confidence assigned to a random
variable is proposed in this paper. It makes it possible to consider at the same
time an interval in which the quantity is guaranteed to be, and a confidence
level to reduce the pessimism induced by interval approach. This contractor
consists in computing a confidence region. Using different confidence levels,
a particular case of potential cloud can be computed. As application, we
propose to compute the reachable set of an ordinary differential equation
under the form of a set of confidence regions, with respect to confidence
levels on initial value.

Keywords: interval analysis, confidence level, potential cloud, reachability
for ODEs

1 Introduction

An interval (see [16] for more details) aims to bound all the values of an uncertain
quantity, for example provided by a measurement device [11]. This approach is
highly effective for every safety, verification or validation procedures because in-
tervals are conservative. The major inconvenience is that intervals are sometimes
too pessimistic, and lead to unexploitable results. Obviously, bounds can be set
on a given measured datum (arbitrarily large), therefore the measurement can be
guaranteed to be enclosed in an interval. However, a probability distribution can
also be deduced from past observations, with more effort, and associated to the
measurement device. We propose to exploit a probability distribution to reduce
the pessimism of intervals.

In order to filter (or reduce) an interval with respect to a given information
(such as a constraint, a measurement or any kind of information), contractors
are mainly used [5]. A contractor is a function taking an interval as input and

∗This work was supported by the “Chair Complex Systems Engineering - Ecole polytechnique,
THALES, DGA, FX, Dassault Aviation, DCNS Research, ENSTA Paris, Télécom Paris, and
Fondation ParisTech” and partially supported by DGA AID.

aENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France. E-mail:
alexandre@ensta.fr, ORCID: https://orcid.org/0000-0002-6185-2480.

DOI: 10.14232/actacyb.285177

50 Julien Alexandre dit Sandretto

returning a smaller interval (included in the previous one). It can be seen as a
filtering approach in the sense that a contractor reduces an interval without any
solution loss. Contractors are often associated to a propagation procedure, at least a
propagation loop, to communicate a contraction on a variable to the others through
some constraints.

In this paper, a novel contractor is proposed to filter an interval following a
confidence level given on the associated quantity. This confidence level is an in-
put of the contractor, the “new” information, while the probability distribution of
the considered variable is a characteristic of the associated random variable. To
compute such contraction, the probability density function (or density for short)
is taken into account. In this paper, we then focus on random continuous vari-
able with a known (and analytical) density function, such as uniform distribution,
normal distribution, beta distribution, etc.

Combining intervals and probability has been already proposed in numerous
papers using techniques such as p-boxes [8, 21], fuzzy sets [7, 18], box-particles [1]
and potential cloud [9, 18]. Some of these representations can be deduced from
probability intervals [6]. The notion of cloud is interesting for us to represent a
very substantial result to a problem such as computing the image of a function, a
set inversion, or the solution of a constraint satisfaction problem (these problems
have been solved with interval methods in [11]). Computing a solution of such
a problem with several confidence levels provides different boxes which, gathered,
provide a particular type of potential cloud.

We are particularly interested in Ordinary Differential Equations (ODEs)
and validated methods to compute their reachable sets via validated simulation
[3, 12, 17, 20]. In the case of Initial Value Problems (IVPs) with ODEs, the initial
state is primordial. An uncertain initial state is generally bounded in a box (also
in a zonotope [3] or a polytope [4]). As experimentation, we propose to consider
in addition to this initial box some confidence levels, and we apply the presented
approach. It allows us to describe the reachable set by a cloud. This more expres-
sive result can then be used in various control problems, parameter identification,
verification, etc.

This paper is organized as follows. The next section is dedicated to establishing
the notation and recall the notion of confidence in probability theory. Section 3
presents the relationship we use between probabilities and interval analysis. Sec-
tions 4 and 5 contain the main results presented in this article: a confidence-based
contractor and the propagation of a confidence contraction to a potential cloud.
The last section concludes the article and gives some hint on future works.

2 Confidence Interval

In this section, some notions required for the definition of confidence interval are in-
troduced. However, to clarify the concept of confidence interval as soon as possible,
an informal explanation can be given:

Confidence-based Contractor 51

A confidence interval is a set S for which the probability of the given random
variable that lies in this set is equal to the given probability P .

Let us define X a random variable (also called random quantity, aleatory vari-
able). A random variable takes different values, resulting from a random phe-
nomenon. In this paper, we focus on continuous univariate distributions such that
X ∈ R. Such a variable implies a mapping (a function) between its possible values
and a probability of appearance. It means that X is measurable.

Definition 1 (Continuous random real variable). A continuous random vari-
able is a random variable whose cumulative distribution function is continuous
everywhere [14].

Considering a continuous random real variable X : Ω → A, X is a measurable
function from a set of possible outcomes Ω to the measurable space A.

The probability that X takes a value in a measurable subset S ⊂ A is given by:

Pr[X ∈ S] = P ({ω ∈ Ω|X(ω) ∈ S}),

where P is the probability measure equipped with Ω.

Considering continuous variable, X can take any numerical value in an inter-
val following the distribution. The distribution is then fully characterized by a
probability density function (see Figure 1).

Definition 2 (Probability density function). A random variable X with values in
a measurable space (usually R

n) has probability density function fX , where
fX is a non-negative Lebesgue-integrable function, if:

Pr[a ≤ X ≤ b] =

∫ b

a

fX(x) dx.

A property is fundamental in probability:

Pr[−∞ < X <∞] =

∫ ∞

−∞
fX(x) dx = 1.

Let us define x̂ a single observed sample of the quantity X. In statistics, an
observed datum allows to compute a confidence interval [19], that is to say an
interval which may contain the actual value, with respect to a given confidence
level. A formal definition can then be stated:

Definition 3 (Confidence interval). Let X be a random sample from a probability
distribution fX . A confidence interval with confidence level cc is an interval with
endpoints a and b with the property:

Pr(a < X < b) =

∫ b

a

fX(x) dx = cc. (1)

52 Julien Alexandre dit Sandretto

fX(x)

∫ b
a
fX(x) dx

a b x

Figure 1: Probability density function of a variable X.

For example, considering a confidence level CL = 95%, one can define the
confidence interval C95%. This interval can be obtained by observation (statistical
approach) or with the help of a known distribution (probability approach). A
new measurement x̂ coming from the (same) experiment will be in the associated
confidence interval such that:

x̂ ∈ C95% 95% of the time.

Figure 2 illustrates the concept of confidence interval and confidence level for a
normal distribution.

In the particular case of symmetric distribution and regarding centered confi-
dence intervals, they follow the inclusion property:

CL1 < CL2 =⇒ CCL1
⊂ CCL2

For example, C90% ⊂ C95%.

Remark 1. The extremal values for a confidence level have a particular meaning:
0% means that there is no chance that a future observation will follow the previous
observations, while 100% means that it is sure that a future observation will follow
the previous observations.

In the following, the distribution are considered symmetric. Therefore, we
mainly focus on normal dstribution.

Confidence-based Contractor 53

3 Interval Analysis and Probability

3.1 Introduction to intervals

The simplest and most common way to represent and manipulate sets of values is
interval arithmetic (see [15]). An interval [xi] = [xi, xi] defines the set of reals xi

such that xi ≤ xi ≤ xi. IR denotes the set of all intervals over reals. The size or
the width of [xi] is denoted by w([xi]) = xi − xi.

Interval arithmetic extends to IR elementary functions over R. For instance,
the interval sum, i.e., [x1] + [x2] = [x1+x2, x1+x2], encloses the image of the sum
function over its arguments. An interval vector or a box [x] ∈ IR

n, is a Cartesian
product of n intervals. The enclosing property basically defines what is called an
interval extension or an inclusion function.

Definition 4 (Inclusion function). Consider a function f : Rn → R
m, then [f] :

IR
n → IR

m is said to be an extension of f to intervals if

∀[x] ∈ IR
n, [f]([x]) ⊇ {f(x),x ∈ [x]} .

It is possible to define inclusion functions for all elementary functions such as
×, ÷, sin, cos, exp, etc. The natural inclusion function is the simplest to obtain: all
occurrences of the real variables are replaced by their interval counterpart and all
arithmetic operations are evaluated using interval arithmetic. More sophisticated
inclusion functions such as the centered form, or the Taylor inclusion function may
also be used (see [11] for more details).

Combining the inclusion function and the rectangle rule, integral can be
bounded following: ∫ b

a

f(x) dx ∈ (b− a) · [f]([a, b])

Standard deviations from the mean
μ

68%

95%

99%

C99%

C95%

C68%

Figure 2: Confidence intervals and confidence levels.

54 Julien Alexandre dit Sandretto

-1

-0.5

0

0.5

1

-10 -5 0 5 10

sin(0.5x)

x

Figure 3: Computation of
∫ 5

−5
sin(0.5x) dx. With interval [−5, 5] (in light grey),

result is [−10, 10] while with two intervals ([−5, 0], [0, 5]) (in darker grey) we obtain
[−5, 5].

In order to obtain a better approximation, a discretization of the integral can
be used, as shown in Figure 3:∫ b

a

f(x) dx =

n∑
i=1

∫ ki+1

ki

f(x) dx ∈
n∑

i=1

(ki+1 − ki) · [f]([ki, ki+1]), (2)

with k1 = a and kn+1 = b.

Notations: In the following, we denote by 1.2[3, 4] the interval [1.23, 1.24].

3.2 Intervals and probability

A random variable X with a probability density fX is observed via a measurement
device. We consider that the density is defined by μ, a mean or expectation of
the distribution, and σ a standard deviation. An observed sample is denoted by
x̂, given with the device associated uncertainty ±m. An interval containing the
actual value can be defined as [x] = [x̂ −m, x̂ +m] (bias can also be added). For
example, we consider that X follows a normal distribution, such that

fX(x|μ, σ) = 1√
2πσ2

e−
(x−μ)2

2σ2

with μ = 1.0 and σ = 1.0 (then the variance σ2 = 1.0). Interval arithmetic and
Equation (2) allow us to compute an enclosure of the integral of the density between
0 and 1 (i.e., the probability Pr[0 ≤ X ≤ 1]), as depicted in Figure 4. The computed
result with n = 100 is 0.34[05578, 21275] (while a mathematical tool1 using floating

1Matlab was used for this comparison.

Confidence-based Contractor 55

numbers computes 0.341345). Using symmetry, the integral between 0 and 2, that
is to say between μ − σ and μ + σ, is included in 0.68[11, 42], which contains the
theoretical confidence level (68.27%) for the confidence interval [μ− σ, μ+ σ].

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4

fX(x|μ, σ)

Figure 4: Interval computation of the integral of a probability density (for a normal
distribution).

In theory, about 95% of the values lie within two standard deviations, that is to
say in the interval [μ−2σ, μ+2σ]. With interval analysis, the obtained probability
is 0.9[48, 61], with n = 100, while with n = 1000 it is reduced to 0.95[38, 51] (the
approximation is better).

Remark 2. The extremal values for a confidence level have a particular meaning
(see Remark 1). We define the associated confidence intervals such that C0% = ∅
and C100% = [−∞,∞].

4 Confidence-based Contractor

The main idea of our contribution is that a measurement provides an interval (by
considering the uncertainty of the measurement device) which is guaranteed to
contain the actual quantity2, but sometimes too pessimistic to be workable. In
addition to an enclosure, the observed variable can be associated to a probability
distribution. Our idea is to combine an interval provided by a measurement and
the probability distribution by establishing a confidence level on the quantity.

4.1 A confidence-based contractor

A generic contractor Cr must satisfy two properties [11]:

• Contractance : ∀[x] ∈ IR, Cr([x]) ⊂ [x],

2Outliers are not considered in this paper.

56 Julien Alexandre dit Sandretto

• Correctness : ∀[x] ∈ IR, [x] ∩ S ⊆ Cr([x]) (with S the solution set).

We propose a confidence-based contractor, denoted Cbc, defined as follows:

Cbc([x]|fX , cc) : IR → IR

[x] → [x] ∩ [y]

with [y] defined such that Pr(x ∈ [y]) =
∫
[y]

fX(x) dx = cc ([y] is the confidence

interval), cc being the confidence coefficient (0 ≤ cc ≤ 1). For example, one can
use the parameter assignment cc = 0.68 for a confidence level of 68%.

Proposition 1. The confidence-based contractor is a contractor.

Proof. Two properties have to hold: contractance and correctness. The contrac-
tance is obvious because the confidence-based contractor uses the intersection op-
eration, and [x] ∩ [y] ⊆ [x], ∀[y]. Correctness is more complex to handle as a new
type of correctness needs to be introduced: the confidence correctness. Confidence
correctness means that if the confidence given on the quantity is well estimated for
a sample, then the variable lies in the corresponding confidence interval with the
associated probability and then the correctness holds. Therefore, if the correctness
may not hold, the confidence correctness holds (all computations are conducted
with validated interval arithmetic). For example, the 90%-correctness holds, ex-
cept for 10% of the samples.

Figure 5 illustrates the effect of the confidence-based contractor applied to the
following example:

Example 1. Let X a random variable with a normal distribution, such that

fX(x|μ, σ) = 1√
2πσ2

e−
(x−μ)2

2σ2

with μ = 1.0 and σ = 1.0. The quantity X is observed and one measurement is
obtained: [x] = [0.7, 2.1]. A confidence level of 68.27% is given on X, that is to say
that we are confident on the accuracy of the observations, so X stays close to its
mean. Our method computes the contraction such that:

Cbc([0.7, 2.1]|(1.0, 1.0), 0.6827) = [0.7, 2.1] ∩ [0.0, 2.0]

= [0.7, 2.0]

So the upper bound is reduced with respect to the confidence level. The pessimism
induced by interval approach is thus limited.

As seen before, two special cases can be described:

• ∀[x], Cbc([x]|fX , 0) = ∅ (annihilating element)

• ∀[x], Cbc([x]|fX , 1) = [x] (identity element)

Confidence-based Contractor 57

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4

fX(x|1, 1)

68.27%

[x]

0.7 2.1

Cbc([x], 0.6827)

x

Figure 5: Illustration of confidence-based contraction.

For two different confidence coefficients cc1 and cc2 such that cc1 < cc2, the
following order holds:

∀[x], Cbc([x]|fX , cc1) ⊂ Cbc([x]|fX , cc2)

The contractor Cbc can be composed with other contractors or with itself. The
order previously shown leads to two particularities:

• ∀[x], Cbc(Cbc([x]|fX , cc2)|fX , cc1) = Cbc([x]|fX , cc1)

• ∀[x], Cbc(Cbc([x]|fX , cc1)|fX , cc2) = Cbc([x]|fX , cc1)

That is to say that the lower confidence coefficient is primary. The standard
operations on sets can be extended to this specific contractor:

• (Cbc([x]|fX , cc1) ∩ Cbc([x]|fX , cc2))([x]) = Cbc([x]|fX , cc1) (intersection)

• (Cbc([x]|fX , cc1) ∪ Cbc([x]|fX , cc2))([x]) = Cbc([x]|fX , cc2) (union)

Remark 3. As a confidence interval is enclosed by its support interval (which
guarantee the enclosure of the quantity), outliers can be automatically detected and
rejected. Our approach can then be able to produce robust confidence intervals.

4.2 Computation of confidence interval

The confidence-based contractor presented in this paper needs the computation of
the confidence interval associated to a given confidence level. Three cases can be
detailed:

• Case 1: a well known probability distribution and a particular confidence level
with known confidence interval. For example, a normal distribution with a
95% confidence level gives a confidence interval [μ− 2σ, μ+ 2σ].

58 Julien Alexandre dit Sandretto

• Case 2: a probability distribution with a known inverse function, such as the
inverse of error function for Gaussian density function (i.e. erf−1).

• Case 3: the general symmetric case without any particular values.

We focus on the third case with the presentation of Algorithm 1. This algorithm
follows a predictor-corrector based approach. This latter needs guesses a and b. For
mean-centered confidence intervals, a and b have to be chosen such that μ = a+b

2
(but it is not mandatory, in presence of bias for example). Two operations are also
needed to implement this algorithm: Narrow and Widen. Widen is equivalent to
an inflation of a well chosen percentage (e.g. 1%), while Narrow is a deflation of
the same percentage.

We apply the proposed algorithm to Example 1 for different confidence lev-
els. The results are gathered in Table 1 and plotted in Figure 6. Experiments
are as follows: for different confidence levels cci from 10% to 99% – and with
the particular value 68.27% – (first column of Table 1), we apply the contractor
Cbc([−5, 5]|fX , cci), with fX from Example 1. It provides several contracted confi-
dence intervals (second column of Table 1). Then, for all these confidence intervals,
we compute the probability for the variable to be in the confidence interval with
the method presented in Section 3.2 (third column of Table 1) for verification.

Remark 4. In the case of a non symmetric distribution, the maximal confidence
interval can be computed to obtain a one-to-one application between a confidence
coefficient cc and confidence interval [a, b]. The maximal confidence interval is
defined by:

max
[a,b]

||b− a||, Pr[a ≤ X ≤ b] = cc (3)

5 Application to Reachability

As an application, we propose to compute the reachability of Ordinary Differential
Equations (ODEs) from an interval initial value. We imagine that the initial value

Algorithm 1 Confidence interval computation

Require: A distribution fX , a confidence coefficient cc, guesses for the bounds of confi-
dence interval a and b

Compute [Pa,b] = Pr[a ≤ X ≤ b] =
∫ b

a
fX(x) dx with the interval method presented in

Section 3
while cc �∈ [Pa,b] do

if cc < [Pa,b] then
Narrow [a, b]

else
Widen [a, b]

end if
Compute [Pa,b] = Pr[a ≤ X ≤ b] =

∫ b

a
fX(x) dx

end while

Confidence-based Contractor 59

Table 1: Confidence intervals for different values of confidence level and computed
probabilities.

Confidence Interval Probability
10% [0.8743, 1.1256] [0.0999, 0.1000]
20% [0.7466, 1.2533] [0.1999, 0.2000]
30% [0.6146, 1.3853] [0.2999, 0.3000]
40% [0.4756, 1.5243] [0.3999, 0.4000]
50% [0.3256, 1.6743] [0.4998, 0.5000]
60% [0.1581, 1.8418] [0.5999, 0.6003]

68.27% [0, 2] [0.6824, 0.6830]
70% [−0.0362, 2.0362] [0.6995, 0.7002]
80% [−0.2800, 2.2800] [0.7988, 0.8000]
90% [−0.6450, 2.6450] [0.8990, 0.9010]
95% [−0.9500, 2.9500] [0.9475, 0.9501]
99% [−1.5200, 3.5200] [0.9863, 0.9901]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 -1 0 1 2 3 4

Confidence Intervals

Figure 6: Confidence intervals for different values of confidence level with respect
to computed probabilities.

is provided by a measurement and that different confidence levels can be considered.
The proposed confidence-based contractor can then be used to reduce the initial
interval. We solve the Initial Value Problem (IVP) for all the obtained intervals
by the help of validated integration. The collection of computed reachable sets is

60 Julien Alexandre dit Sandretto

depicted through a kind of potential cloud that is useful for verification, control
synthesis, or validation problems on ODEs. An approach consisting also in the
propagation of probabilities through an initial value problem with ODE has been
proposed in last decade [13]. If the goal is the same, how to add information
coming from a probability knowledge to the reachability analysis, the technique is
different. In [13], authors exploit Taylor models to reprensent uncertainties (mainly
on parameters), and propagate them into an integration process to compute fuzzy
trajectories (see [22] for fuzzy sets). Our contribution is mainly based on confidence
level, this concept is not considered in [13]. Nevertheless, an example from this
latter is studied in Section 5.3 to compare and discuss both approaches.

5.1 Integration and propagation

5.1.1 Validated simulation

When dealing with validated computation, mathematical representation of an IVP-
ODE is as follows: {

ẏ(t) = g(t,y(t))

y(0) ∈ [y0] ⊆ R
n.

(4)

We assume that g : R×R
n → R

n is continuous in t and globally Lipschitz in y, so
Equation (4) admits a unique solution.

The set (expressed as a box) [y0] of initial conditions is used to model some
(bounded) uncertainties. For a given initial condition y0 ∈ [y0], the solution at
time t > 0, when it exists, is denoted y(t;y0). The goal, for validated numerical
integration methods, is then to compute the set of solutions of Equation (4), i.e.,
the set of possible solutions at time t given the initial condition in the set of initial
conditions [y0]:

y(t; [y0]) = {y(t;y0) | y0 ∈ [y0]}. (5)

Validated numerical integration schemes, exploiting set-membership framework,
aim at producing the solution of the IVP-ODE that is the set defined in Equa-
tion (5). It results in the computation of an outer approximation of y(t; [y0]). The
use of set-membership computation for the problem described above makes pos-
sible the design of an inclusion function for the computation of [y](t; [y0]), which
is an outer approximation of y(t; [y0]) defined in Equation (5). To do so, a se-
quence of time instants t1, . . . , tn such that t1 < · · · < tn and a sequences of boxes
[y1], . . . , [yn] such that y(ti+1; [yi]) ⊆ [yi+1], ∀i ∈ [0, n − 1] are computed. From
[yi], computing the box [yi+1] is a classical 2-step method (see [12]):

• Phase 1: compute an a priori enclosure [ỹi] of the set {y(tk;yi) | tk ∈
[ti, ti+1],yi ∈ [yi]}, such that y(tk; [yi]) is guaranteed to exist,

• Phase 2: compute a tight enclosure of the solution [yi+1] at time ti+1.

Two main approaches can be used to compute the tight enclosure in Phase 2. The
first one, and the most used, is the Taylor method [15, 17]. The second one, more

Confidence-based Contractor 61

recently studied, is the validated Runge-Kutta approach [3]. The reachability
consists in computing the enclosure of the set of states at a specific instant τ as
defined above by [y(τ); [y0]].

5.1.2 Propagation

The procedure given in Section 5.1.1, applied to Equation (5), produces a reachable
tube based on time discretization as depicted in Figure 7. Considering an initial
value [y0]

∗ such that [y0]
∗ ⊆ [y0], a propagation procedure [2] can be performed

to compute the solution of the IVP-ODE:{
ẏ(t) = g(t,y(t))

y(0) ∈ [y0]
∗ ⊆ R

n.
(6)

by keeping in mind the fact that y(t; [y0]
∗) ⊆ y(t; [y0]), ∀t. We propagate along the

discretization the contraction of the initial state with the help of a Runge-Kutta
based contractor as proposed in [3]. The resulting reachable tube is showed in
Figure 7.

One simulation followed by several propagation is much faster than several
simulations [2] due to the economy of the dynamic discretization re-computation
and the conservation of the first phase results (which is the more time-consuming
step).

Time

S
ta
te

[y0]

[ỹ0]

t0 t1

t2
t3

[y1]
∗ [y2]

∗

[y3]
∗

[y0]
∗

Forward
Propagation

[ỹ1]

[ỹ2]

Figure 7: Continuous reachable tube (in blue) and propagation (in red) of a new
initial condition [y0]

∗ (with [y0]
∗ ⊂ [y0]).

5.2 Potential clouds

The formalism of clouds has been proposed in [18] to handle uncertainties. With
clouds, uncertainties are seen as safety constraints. The potential clouds can be
exploited for high dimensional and non-formalised uncertainties, as in [10].

62 Julien Alexandre dit Sandretto

From [18], the formal definition of a cloud over a set M is a mapping x that
associates with each ξ ∈ M a nonempty, closed and bounded interval x(ξ) such
that

]0, 1[⊆
⋃

ξ∈M
x(ξ) ⊆ [0, 1]. (7)

x(ξ) = [x(ξ), x(ξ)] is called the level of ξ in the cloud x. A cloud and an α-cut are
illustrated in Figure 8.

0

1

x(ξ)

upper α-cut
(Pr ≥ 1− α)

lower α-cut
(Pr ≤ 1− α)

ξ

α

support

Figure 8: A cloud over R with an α-cut at α = 0.6.

In the particular case where a cloud x is defined by a potential function V :
M → R (bounded below) such that

x(ξ) := [Pr(V (x) > V (ξ)), P r(V (x) ≥ V (ξ))] (8)

that can be written x(ξ) := [α(V (ξ)), α(V (ξ))] where α-cuts are level sets of V . In
general, the probabilities are not known and then α, α : R → [0, 1] are assumed (we
call these functions potential level maps), and x is called a potential cloud.

Regarding the definition, determining a cloud is similar to compute a lower
and an upper bounds of the confidence regions for different confidence levels (a
discretization from 100% to 10% for example) with the help of Cumulative Distri-
bution Functions (CDFs). Considering multivariate problems, a potential function
is used to map a multivariate random variable to a univariate one. In the follow-
ing, we consider only the upper bound of the confidence regions because our main
interest concerns safety.

Proposition 2. The collection of the reachable sets [y(τ ; [y0]
i)], i = 1 . . .m, with

[y0]
i = Cbc([y0]|fX , cci) is a special case of potential clouds applied to reachability.

Confidence-based Contractor 63

In order to illustrate this capability, a one-dimensional example is studied (multi-
variate problems can be considered by the help of a potential function).

Example 2. The following IVP is considered:{
ẏ(t) = y cos(y)

y(0) ∈ [0, 2]
(9)

The initial condition follows a normal distribution, such that

fX(x|μ, σ) = 1√
2πσ2

e−
(x−μ)2

2σ2

with μ = 1.0 and σ = 1.0 (same as before, recalled for clarity). The system
described by Equation (9) has to reach a goal given by the interval [1.5, 1.6] at
t = 5, i.e., [y(5; [y0])] ⊂ [1.5, 1.6]. Our objective is to prove that the system
reaches its goal with respect to a confidence level given on the initial condition.
Equation (9) is solved with validated simulation as described in [3]. The obtained
reachable set at t = 5 is [−276.986, 279.276]. The goal is then unfulfilled. With
successive tests from a confidence of 90% to 10% (from pessimistic to optimistic),
the confidence-based contractor is applied followed by a forward propagation along
the validated simulation (as presented in Section 5.1.2).

The reachable sets of problems described by:{
ẏ(t) = y cos(y)

y(0) ∈ [y0]
i = Cbc([0, 2]|fX , cci)

(10)

are gathered in Table 2.

Table 2: Confidence levels, contracted initial intervals and reachable sets.

Confidence Initial Final
90% [0, 2] [−276.986, 279.276]
80% [0, 2] [−276.986, 279.276]
70% [0, 2] [−276.986, 279.276]
60% [0.1581, 1.8418] [−189.871, 192.408]
50% [0.3256, 1.6743] [1.56281, 1.57764]
40% [0.4756, 1.5243] [1.56871, 1.57205]
30% [0.6146, 1.3853] [1.56964, 1.57119]
20% [0.7466, 1.2533] [1.57004, 1.57082]
10% [0.8743, 1.1256] [1.57027, 1.57061]

It shows that:

• Goal can be proved to be achieved after 50%, i.e., we have one chance out of
two that the initial state is in the contracted interval;

64 Julien Alexandre dit Sandretto

• Confidence contractor has effect from 60%;

• Contraction-propagation approach reduces computation time (106 seconds for
ten simulations versus 87 seconds for one simulation and nine propagations).

The trajectories for 50% and 60% are given in Figure 9. A potential cloud composed
by the reachable sets for different confidence levels is depicted in Figure 10.

2 41 3

0

-4

-2

2

4

-3

-1

1

3

t

y(t)

Figure 9: Validated trajectories for 60% (in grey waves) and for 50% (in light grey)
confidence contraction.

10

15

20

25

30

35

40

45

50

55

1.562 1.564 1.566 1.568 1.57 1.572 1.574 1.576 1.578

Confidence Intervals

[y(5)]

cc

Figure 10: Reachable set for different confidence levels presented as a potential
cloud.

Confidence-based Contractor 65

5.3 Comparison with trapezoidal fuzzy numbers

In [13], authors propose several interesting examples. In particular, a two-state
bioreactor model with uncertain parameters is studied. It consists in a well-mixed
bioreactor in which biomass of a single organism is produced with respect to a
single limiting substrate. The continuous dynamics is described by:{

Ẋ = (μ− aD)X

Ṡ = D(Sf − S)− kμX,
(11)

where X and S are the concentrations of biomass and substrate. Here μ is a func-
tion of S describing the specific growth rate of biomass given by μ = μmaxS

Ks+S (in the
case of monod kinetics), D is the dilution rate, a the biomass washout fraction, k
the inverse yield coefficient, and Sf the substrate feed concentration. The param-
eter values are: a = 0.5, k = 10.53, Sf = 5.7g/L and μmax = 1.2h−1. The initial
states are: X(0) = 0.829g/L and S(0) = 0.8g/L. The two parameters D and Ks are
treated as uncertain and represented by symmetric trapezoidal fuzzy numbers in
[13]. This kind of fuzzy number is described by its support and core intervals. For
D, support and core are [0.35, 0.37]h−1 and [0.35667, 0.36333]h−1 (respectively),
and for Ks they are [6.8, 7.2]g/L and [6.93333, 7.06667]g/L (respectively). We con-
sider support and core intervals as confidence intervals (with a confidence level at
100% for the support and ε << 1% for the core). Simulations are performed till
t = 8h, and the final states are used to rebuild the trapezoidal fuzzy numbers as
given in Figure 11.

Discussion: The example from [13] being different than the purpose treated in
this paper, the capabilities of confidence based contractor are not really exploited.
However, the comparison is interesting. First of all, it is important to notice that the
reachability method used in [13] is more efficient than the one used here (VSPODE
is dedicated to handle uncertain parameters), and thus the reachable tube seems
thinner. However, the way that discretization with α-cuts is performed in [13] leads
to consider as constant a parameter during all the integration process while our
approach allows all the possible values at each instant. Based on this observation,
the method proposed in [13] is probably more optimistic than the confidence based
propagation, as depicted in Figure 11. To conclude this discussion, our method is
not dedicated to consider correlation between parameters. Furthermore, this point
is not clearly treated in [13].

5.4 Inverse problem

The inverse problem consisting in finding the confidence level such that a constraint
on reachable set can be proved is interesting. For example, a requirement in term
of confidence level on the position of a robot is directly connected to the quality
of the measurement devices of the robot. Therefore, if a certain sensor quality is
required by the system to validate a given property (e.g. safety), it is important to
be able to bound the required confidence level.

66 Julien Alexandre dit Sandretto

0

0.2

0.6

1

0.7 0.75 0.8 0.85 0.9 0.95

μ
X

X(g.L−1)

(a) Biomass concentration

0

0.2

0.6

1

1.05 1.15 1.25 1.35 1.45

S(g.L−1)

μ
S

(b) Substrate concentration

Figure 11: Results for Example (11) at t = 8h (in blue: the concentrations w.r.t.
confidence intervals for parameters (support / core); in dashed lines: results from
[13]).

A contractor approach associated with a forward-backward propagation (the
specific contractor programming approach presented in [2] is exploited) can be
used to compute the initial condition [y0] such that [y(5; [y0])] ⊂ [1.5, 1.6]. After
this preliminary step, the confidence coefficient is computed with: cc = Pr(x ∈
[y0]) =

∫
[y0]

fX(x) dx.

The algorithm used consists of four steps:

1. Validated simulation with [y0] till tend to obtain [y(tend; [y0])]

2. Intersection of [y(tend; [y0])] with the goal: [y(tend)] = [y(tend; [y0])] ∩ [ygoal]

3. Backward propagation from tend to t = 0 to obtain [y(0; [y(tend)])]

4. Computation of the confidence coefficient: Pr(x ∈ [y(0; [y(tend)])])

On the previous example, the backward propagation provides [y0] =
[0.200625, 1.79937] which gives a confidence coefficient cc = [0.576115, 0.576464],
i.e., a confidence level of around 57.62%.

6 Conclusion and future works

In this paper, a novel contractor based on confidence level is proposed. It aims to
reduce the pessimism of the interval approach by considering the probability density
of the variables. We showed on a simple running example that our method pro-
vides results corresponding to the theory on normal density. An application to the
reachability of ordinary differential equations has been proposed. The confidence-
based contractor has been associated to a validated integration method to compute
reachable sets for different values of confidence level. A propagation procedure
allows one to propagate the contraction on initial state to the reachable set. We

Confidence-based Contractor 67

proposed to depict the different reachable sets under the form of a potential cloud.
This method was tested on an example. Finally, the inverse problem consisting in
computing the confidence coefficient such that a constraint on the reachable set is
fulfilled has been solved.

As future work, even if no limits exist on the proposed approach in terms of
problem size or considered distribution, we should apply it to more complex exam-
ples and different probability densities. Moreover, it could be interesting to exploit
it in the field of robotics considering the distribution of the sensors in a control
synthesis, safety verification or path planning.

References

[1] Abdallah, Fahed, Gning, Amadou, and Bonnifait, Philippe. Box particle
filtering for nonlinear state estimation using interval analysis. Automatica,
44(3):807 – 815, 2008. DOI: 10.1016/j.automatica.2007.07.024.

[2] Alexandre dit Sandretto, Julien and Chapoutot, Alexandre. Contraction, prop-
agation and bisection on a validated simulation of ODE. In Small Workshop
on Interval Methods, 2016.

[3] Alexandre dit Sandretto, Julien and Chapoutot, Alexandre. Validated explicit
and implicit Runge-Kutta methods. Reliable Computing, 22:79–103, 2016.

[4] Alexandre dit Sandretto, Julien and Wan, Jian. Reachability analysis of non-
linear odes using polytopic based validated runge-kutta. In Potapov, Igor and
Reynier, Pierre-Alain, editors, Reachability Problems, pages 1–14. Springer In-
ternational Publishing, 2018. DOI: 10.1007/978-3-030-00250-3_1.

[5] Chabert, Gilles and Jaulin, Luc. Contractor programming. Artificial Intelli-
gence, 173(11):1079 – 1100, 2009. DOI: 10.1016/j.artint.2009.03.002.

[6] Destercke, Sébastien, Dubois, Didier, and Chojnacki, Eric. Transforming prob-
ability intervals into other uncertainty models. In EUSFLAT 2007 proceedings,
volume 2, pages 367–373, 2007.

[7] Dubois, Didier, Kerre, Etienne, Mesiar, Radko, and Prade, Henri. Fuzzy In-
terval Analysis. In Fundamentals of Fuzzy Sets, pages 483–581. Springer US,
Boston, MA, 2000. DOI: 10.1007/978-1-4615-4429-6_11.

[8] Ferson, Scott, Kreinovich, Vladik, Grinzburg, Lev, Myers, Davis, and Sentz,
Kari. Constructing probability boxes and dempster-shafer structures. Techni-
cal report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States),
2015.

[9] Fuchs, Martin. Cloud based design optimization. In IFSA/EUSFLAT Conf.,
pages 345–350, 2009.

68 Julien Alexandre dit Sandretto

[10] Fuchs, Martin and Neumaier, Arnold. Autonomous robust design optimisation
with potential clouds. Int. J. Reliability and Safety, 3:23–34, 01 2009. DOI:
10.1504/IJRS.2009.026833.

[11] Jaulin, Luc, Kieffer, Michel, Didrit, Olivier, and Walter, Eric. Applied Interval
Analysis. Springer, 2001. DOI: 10.1007/978-1-4471-0249-6.

[12] Lohner, Rudolf J. Enclosing the solutions of ordinary initial and boundary
value problems. Computer Arithmetic, page 255–286, 1987.

[13] Măceş, D Andrei and Stadtherr, Mark A. Computing fuzzy trajectories for
nonlinear dynamic systems. Computers & chemical engineering, 52:10–25,
2013. DOI: 10.1016/j.compchemeng.2012.11.008.

[14] Mendenhall, William, Beaver, Robert J, and Beaver, Barbara M. Introduction
to Probability and Statistics. Cengage Learning, 2012.

[15] Moore, Ramon E. Interval Analysis. Series in Automatic Computation. Pren-
tice Hall, 1966.

[16] Moore, Ramon E., Kearfott, R Baker, and Cloud, Michael J. Introduction to
Interval Analysis. Siam, 2009. DOI: 10.1137/1.9780898717716.

[17] Nedialkov, N. S., Jackson, K. R., and Corliss, G. F. Validated solutions of
initial value problems for ordinary differential equations. Applied Mathemat-
ics and Computation, 105(1):21–68, 1999. DOI: 10.1016/S0096-3003(98)

10083-8.

[18] Neumaier, Arnold. Clouds, fuzzy sets, and probability intervals. Reliable
computing, 10(4):249–272, 2004. DOI: 10.1023/B:REOM.0000032114.08705.

cd.

[19] Neyman, Jerzy. Outline of a theory of statistical estimation based on the
classical theory of probability. Phil. Trans. R. Soc. Lond. A, 236(767):333–
380, 1937. DOI: 10.1098/rsta.1937.0005.

[20] Rauh, A., Hofer, E. P., and Auer, E. Valencia-ivp: A comparison with other
initial value problem solvers. In 12th GAMM - IMACS International Sympo-
sium on Scientific Computing, Computer Arithmetic and Validated Numerics
(SCAN 2006), pages 36–36, 2006. DOI: 10.1109/SCAN.2006.47.

[21] Williamson, Robert C. and Downs, Tom. Probabilistic arithmetic. I. Nu-
merical methods for calculating convolutions and dependency bounds. In-
ternational Journal of Approximate Reasoning, 4(2):89 – 158, 1990. DOI:
10.1016/0888-613X(90)90022-T.

[22] Zadeh, Lotfi A. Fuzzy sets. Information and control, 8(3):338–353, 1965.
DOI: 10.1016/S0019-9958(65)90241-X.

Acta Cybernetica 25 (2021) 69–84.

Identification of Multi-Faults in GNSS Signals

using RSIVIA under Dual Constellation∗

Shuchen Liuab, Jan-Jöran Gehrtac, Dirk Abelad,
and René Zweigelae

Abstract

This publication presents the development of integrity monitoring and
fault detection and exclusion (FDE) of pseudorange measurements, which
are used to aid a tightly-coupled navigation filter. This filter is based on
an inertial measurement unit (IMU) and is aided by signals of the global
navigation satellite system (GNSS). Particularly, the GNSS signals include
global positioning system (GPS) and Galileo. By using GNSS signals, navi-
gation systems suffer from signal interferences resulting in large pseudorange
errors. Further, a higher number of satellites with dual-constellation increases
the possibility that satellite observations contain multiple faults. In order to
ensure integrity and accuracy of the filter solution, it is crucial to provide
sufficient fault-free GNSS measurements for the navigation filter. For this
purpose, a new hybrid strategy is applied, combining conventional receiver
autonomous integrity monitoring (RAIM) and innovative robust set inversion
via interval analysis (RSIVIA). To further improve the performance, as well
as the computational efficiency of the algorithm, the estimated velocity and
its variance from the navigation filter is used to reduce the size of the RSIVIA
initial box. The designed approach is evaluated with recorded data from an
extensive real-world measurement campaign, which has been carried out in
GATE Berchtesgaden, Germany. In GATE, up to six Galileo satellites in orbit
can be simulated. Further, the signals of simulated Galileo satellites can be
manipulated to provide faulty GNSS measurements, such that the fault detec-
tion and identification (FDI) capability can be validated. The results show
that the designed approach is able to identify the generated faulty GNSS
observables correctly and improve the accuracy of the navigation solution.
Compared with traditional RSIVIA, the designed new approach provides a
more timely fault identification and is computationally more efficient.

∗The development of current publication is part of the joint research project GALILEOnautic 2
(grant number 50NA1808), which is supported by the German Federal Ministry for Economic
Affairs and Energy. Basis for the support is a decision by the German Bundestag.

aInstitute of Automatic Control, RWTH Aachen University, Germany
bE-mail: s.liu@irt.rwth-aachen.de, ORCID: https://orcid.org/0000-0003-4685-491X
cE-mail: j.gehrt@irt.rwth-aachen.de, ORCID: https://orcid.org/0000-0003-4348-2110
dE-mail: d.abel@irt.rwth-aachen.de, ORCID: https://orcid.org/0000-0003-0286-3654
eE-mail: r.zweigel@irt.rwth-aachen.de, ORCID: https://orcid.org/0000-0003-2440-2138

DOI: 10.14232/actacyb.285315

70 Shuchen Liu, Jan-Jöran Gehrt, Dirk Abel, and René Zweigel

Keywords: RSIVIA, RAIM, GNSS, fault detection and identification, Kalman
filter

1 Introduction

As described in the market report from the European Global Navigation Satellite
Systems Agency (GSA) [5], satellite-based navigation will substantially contribute
to the future innovation of self-driving vehicles. In autonomous applications, espe-
cially in safety-critical scenarios, a false estimation of vehicle states can result in
catastrophic accidents. Therefore, a reliable navigation solution with high integrity
is required. To maintain the integrity of a satellite-based navigation system, the
faulty GNSS observations caused by signal interferences and other possible reasons
shall be detected, identified and excluded. Ever since the operation of open service
of the newly developed EU satellite navigation system Galileo, the combination of
GPS and Galileo provides more available satellites in view for the modern naviga-
tion systems. However, a higher number of satellites also increases the possibility
that satellite observations contain a fault or even multi-faults. Therefore, iden-
tification of multi-faults becomes a crucial and challenging task to maintain the
integrity of GNSS-based navigation systems.

The previous work [10] presents the development of a fault detection and ex-
clusion (FDE) algorithm of GNSS measurements. The approach operates as an
extension of a tightly-coupled navigation filter, which integrates the measurements
from GNSS, an inertial measurement unit (IMU) and a Doppler velocity log (DVL)
[6]. In [10], FDE bases on the receiver autonomous integrity monitoring (RAIM)
approach with parity space [12], which is a pure statistical method. RAIM predicts
pseudorange residuals, which are based on the estimated reference vehicle state
using least square method, and uses the residuals to detect and identify pseudo-
range faults. Since RAIM is a pure statistic method and based on single fault
assumption, it might not always be adequate, if multiple measurements are faulty.
This can be observed in [11]. This work concentrates on multi-fault identification,
when the conventional statistic based approach cannot certainly provide a correct
identification solution.

In recent years, an alternative localization method, set inversion via interval
analysis (SIVIA), is developed under such concern. SIVIA estimates a trust region
of the state space fulfilling a predefined confidence level. The basic operations of
interval analysis are introduced in [7] and applied to realize robot localization in
[8]. Further, [13] shows an example of integrating velocity information from DVL
to compute the guaranteed robot trajectories using interval analysis. With respect
of GNSS application, robust SIVIA (RSIVIA) approach is applied for satellite po-
sitioning in [3] [4], which allows to estimate the trust region of antenna position
with existing erroneous pseudorange measurements. Hereby, it is possible to iden-
tify outliers in the GNSS observations by checking the compatibility of each GNSS

Identification of Multi-Faults in GNSS Signals using RSIVIA 71

measurement and the estimated trust region. The main drawback of this approach
is its computational load, because RSIVIA begins with an initial guess of an ar-
bitrary big box, bisects it into small boxes and operates on them separately and
iteratively. In addition, RSIVIA usually runs at a lower rate (1 Hz in [4]) than
GNSS observations (10 Hz in current navigation filter), such that the timely fault
identification can not be guaranteed. This can result in corrupted state estimation,
when there is an increasing pseudorange error [14].

The present publication proposes a FDE scheme to benefit the advantages of
RAIM and RSIVIA and compensates the disadvantages of them, which is illustrated
in Fig. 1. Once a new set of GNSS measurements is available, fault detection and
identification (FDI) of RAIM are carried out iteratively. Eventually, a fault alert
is generated from RAIM and used as a trigger for RSIVIA, if RAIM still detects
a fault but is not capable to identify it. This reduces the computational load and
enables a more timely fault identification. When RSIVIA is triggered for the further
FDI task, it is executed in an iterative process, which refers to RSIVIA GNSS
update in Fig. 1: it starts with the assumption that no fault exists in the observed
measurement space. Whenever an empty trust region is returned, RSIVIA assumes
one more fault existing in the measurements. This iterative process continues until
a non-empty trust region is estimated. The rest of the faulty measurements are
identified by checking the consistency of the measurements with the resulting trust
region.

RSIVA
GNSS Update

Box Propagation
(100Hz)

Fault
Identified?

Parity Space
Fault Identification

- Fault
Detection

Fault
Isolation

yes

yes noGNSS
Measurement

End FDE:
GNSS Ready

no

Navigation Filter (100 Hz)
IMU

Measurement

Fault
Detected?

Solution
Empty?

End FDE:
GNSS Abandoned

no

yes

RAIM

Fault-Free GNSS Measurements

NED Velocity
& Variance

E
st

im
a
te

d
 B

o
x
 (

B
u

ff
er

U
p

d
a
ti

n
g
)

P
ro

p
a
g
a
te

d
 B

o
x

 (
In

it
ia

l
G

u
es

s)

Execution

Information

RSIVIA
HPL

Figure 1: Scheme of GNSS FDE involving RAIM and RSIVIA

To reduce the computational load, RSIVIA is initialized with an arbitrary big
box and the first trust region is estimated only with GNSS measurements. After
that, the estimated velocity information and its variance from the navigation filter
are used to propagate the trust region from last step. In this way, further RSIVIA
steps start with the propagated trust box as initial guess, whose size is much smaller
than an arbitrary big box.

72 Shuchen Liu, Jan-Jöran Gehrt, Dirk Abel, and René Zweigel

Furthermore, output from the conventional RAIM is used to aid RSIVIA. Esti-
mated horizontal protection level (HPL) is used for parameterizing minimal error
bound, whose deterministic calculation is not given in [3] [4] for GNSS application.

The designed approach is evaluated in post-processing environment with the
recorded data, with respect of correctness of FDI, accuracy improvement of the
navigation solution and reduce of computational load. In order to reproduce the test
scenario in a post-processing environment, all sensors and GNSS correction data are
recorded in real-world tests at Galileo test and development environment (GATE) in
Berchtesgaden, Germany. To validate the FDI functionality, the fault identification
results are compared with report of generated faulty Galileo measurements from
IFEN GmbH.

The paper is structured as follows: First, the state vector of navigation filter
and RAIM are introduced briefly. Then, the method of RSIVIA using GNSS mea-
surements is described as the basic. At the end of methodology part, the practical
integration of velocity outputs from navigation filter and RAIM is given. In the
experimental validation part, the measurement setup and target hardware are de-
scribed, experimental results are evaluated and discussed afterwards. Finally, the
last section draws the conclusion and provides an outlook for future developments
of integrity monitoring within inertial navigation system.

2 Methodology

2.1 Navigation Filter

The basic concepts and equations of a tightly-coupled navigation filter are intro-
duced in [6] [9]. This section concentrates on introducing the filter outputs. In total,
18 states are predicted within a strap-down algorithm using the measurements from
3D accelerometer and 3D gyroscope,

x = [pe
eb vn

eb qn
b ba bg cb cd]

T . (1)

The state vector x contains position pe
eb of the IMU body-frame origin in Earth-

Centered-Earth-Fixed (ECEF) coordinates (3× 1) and the velocity of body-frame
origin vn

eb (3×1), which is in navigation frame North-East-Down (NED) coordinates
with respect to ECEF frame. Furthermore, a quaternion qn

b for alignment of body
frame and NED frame (4 × 1), accelerometer bias ba (3 × 1) and gyroscope bias
bg (3× 1) are estimated. Additionally, a tightly coupled system needs to estimate
receiver clock bias cb and drift cd for correction of pseudo- and deltaranges. The
process and measurement model used for Kalman update is given in [6] [9]. It should
be stressed that the velocity information vn

eb is given in NED coordinates, which
is one important reason for choosing NED coordinates as the operation navigation
frame for RSIVIA. The other reason is that using NED coordinates makes it easier
to distinguish between horizontal and vertical components. Focusing on horizontal
components is important for most autonomous applications.

Identification of Multi-Faults in GNSS Signals using RSIVIA 73

2.2 RAIM with Parity Space

The previous work [10] presents the development of a FDE extension based on
RAIM. The necessary equations of residual-based RAIM for pseudorange fault de-
tection are given in [1] [10]. Further, using parity space based RAIM for fault
identification is introduced in [12] [10]. Hereby, only necessary theory is explained,
helping to understand the integration of RAIM in Sec. 2.5.

In General, RAIM uses the pseudorange residuals to detect and identify faulty
GNSS measurements. Pseudoranges are predicted, based on the estimated ref-
erence vehicle states. The pseudorange residuals are calculated as the difference
between measured and predicted pseudoranges. According to statistics, with ν
independent standard normal random variables, the sum of their squares satisfies
chi-squared distribution with ν degree of freedom (DOF). Assuming that the pseu-
dorange measurement noise satisfies the white mean Gaussian distribution with
various standard deviation. After using pseudorange measurements to estimate the
4 unknowns by using least square approach, the normalized predicted residual of
pseudoranges ν shall satisfy N − 4 DOF chi-squared distribution. N is the number
of available pasudorange measurements. Otherwise, RAIM shall declare that an
error occurs. The fault identification is done iteratively with the help of parity
space using Bayes Rule, assuming all satellites having the same prior probability of
being faulty [12][10]. It should be noticed that RAIM also estimates HPL, which
is a function of pseudorange variances, the geometric satellite constellation and
the predefined parameters, i.e. false alarm rate and missed detection probability.
The estimated HPL is used in Sec. 2.5 to parametrize the minimal error bound of
RSIVIA.

2.3 RSIVIA with Pseudorange Measurements

2.3.1 Interval Analysis Basics

Interval analysis (also called interval computation) is the operation on intervals
instead of algebraic operation on numbers, although the basic operators are the
same as in algebraic operation: +, −, ×, ÷, sin, tan, exp. The computation of
intervals is defined in [7], as follows

[a]♦[b] = [{a♦b ∈ R|a ∈ [a], b ∈ [b]}], (2)

where [a] and [b] are intervals. Further, the high dimensional interval is defined as
a box. ♦ can be any of the algebraic operations listed above. By applying interval
analysis on satellite-based navigation, the pseudorange measurement equation is
expressed as

[ρi] =
√
([xs

n,i]− [xa
n])

2 + ([xs
e,i]− [xa

e])
2 + ([xs

d,i]− [xa
d])

2 + [cb], ∀i ∈ {1, 2, ..., N},
(3)

where xs = [xs
n,i, x

s
e,i, x

s
d,i]

T is the ith satellite position and xa = [xa
n, x

a
e , x

a
d, cb]

T is
the antenna position and receiver clock bias, both in NED frame. N is the number
of available pseudorange measurements.

74 Shuchen Liu, Jan-Jöran Gehrt, Dirk Abel, and René Zweigel

2.3.2 Measurement Bounding

In the context of satellite pseudorange-based navigation, the measurement vector
is ρ̃ = [ρ̃1, · · · , ρ̃i, · · · , ρ̃N]. Based on the measured pseudoranges ρ̃, the interval of
them [ρ] should be estimated. In [4], an approach is proposed, estimating the lower
and upper bound of the measurements, tolerating faulty measurements. Allowing
a certain number of faulty measurements to estimate the trust box is defined as
q-relax, where q is the number of tolerated faulty measurements.

Consider a set of N available measurements with the condition of q-relax, it
means that at least N−q measurements are required to be fault free. It is assumed
that the probability of a measurement being faulty satisfies binomial distribution.
The probability of q-relax condition satisfied is calculated as

P (nff ≥ N − q) =

N∑
k=N−q

P (nff = k) =

N∑
k=N−q

N !

k!(N − k)!
pkff (1− pff)

N−k, (4)

where the confidence level P (nff ≥ N − q) is predefined. Therefore, pff can be
estimated as the only unknown in Eq. (4), which is the probability of each satellite
being faulty free. The probability density function of a measurement noise is known
as f(e), which is practically assumed to be a white Gaussian distribution. In this
way, for each measurement pff is calculated as

pff = P (ρ ∈ [ρ̃+ a, ρ̃+ b]) =

∫ b

a

f(e)de. (5)

With pff estimated from Eq. (4), the lower and upper bound can be calculated by
minimizing the width of the interval [a, b].

2.3.3 The RSIVIA Process with GNSS Measurements

To estimate the trust box of the state vector [xa], RSIVIA starts with the feasible
initial guess [xa

0], which allows to be arbitrarily big and guarantees the true solution
of xa inside it. RSIVIA attempts to reduce the size of the initial guess with a
contractor C. A contractor is an operator IR

n → IR
n associated to a constraint

(in our case Eq. (3)), which returns a box C[x] ⊆ [x] without losing any vector
consistent with the constraint [13]. If the size of the operated box cannot be further
reduced by a contractor , it will be bisected into two small boxes and the contractor
operation will be repeated for all small boxes remained. This process ends, until
the width of all remained boxes is smaller than a predefined error bound ε. The
detailed design of the RSIVIA process in GNSS applications is given in [3] [4], which
includes forward and backward contractor using constraints given in Eq. (3). This
RSIVIA operation is summarized as Line 4 in Alg. 1.

Alg. 1 gives the whole process of a bounding box update, when a new GNSS
measurement is available. This process starts with a fault-free assumption (q = 0)
and attempts to estimate the trust region with an increasing q. This operation is
summarized as GNSS update. The resulting box [xa] is applied in Eq. (3) to predict

Identification of Multi-Faults in GNSS Signals using RSIVIA 75

Algorithm 1 GNSS update with pseudorange measurements

Function gnss update(in:[xa
0],x

s,ρ, ε, out:[xa],f)

1: Initialization: [xa]← ∅, q ← 0, get number of satellites N
2: while ([xa] = ∅ & N − q ≥ 4) do
3: ([xs], [ρ])← get bounds(xs,ρ, q) Sec. 2.3.2
4: [xa]← rsivia(in:[xa

0], [x
s], [ρ], q, ε)

5: if [xa] = ∅ then
6: q ← q + 1
7: else
8: f ← check consistency([xa], [xs], [ρ])
9: end if

10: end while
11: return xa,f

the interval of each pseudorange, with the corresponding box of satellite position
[xs

n,i, x
s
e,i, x

s
d,i]. The faulty measurement is identified when the predicted pseudo-

range interval has no intersection with the measured one. This consistency check
returns a fault vector f consisting of N elements, which are 0 or 1, representing
whether this measurement is fault free.

Still, questions remain in this process, i.e. how should the initial guess [xa
0] and

the minimal acceptable error bound ε be chosen, considering both the correctness
of fault identification and computational load. These will be answered in Sec. 2.4
and 2.5, respectively.

2.4 Integration of Velocity Information in RSIVIA

In [13], a frame is proposed for guaranteed integration of state equations. An
example is given in [13], which uses DVL measurements and differential state con-
straints to estimate tubes of driven trajectories of an autonomous underwater vehi-
cle (AUV). A tube is defined as an envelope, which encloses an uncertain trajectory.
To estimate the tube, a differential tube contractor C d

dt

is applied, which consists

of a forward contractor C→d
dt

and a backward contractor C←d
dt

[13].

Due to several reasons, only forward contraction C→d
dt

is applied in the current

work, using the output velocity information from the navigation filter in Sec. 2.1.
First, the propagated box using velocity information is not the output as in [13].
Instead, the propagated box is only used as the initial box [xa

0] for GNSS update
in Alg. 1. GNSS update still dominates the result of the trust box estimation.
Second, in [13] backward contraction is necessary, because only the DVL velocity
measurements are available. Without backward contraction, the size of estimated
tubes can never be reduced, because it is the integration of the width of mea-
surement error bound. Due to the usage of GNSS measurements, this is not the
situation in current publication. In practice, the estimated velocity is with relative
narrow variance, which enables an accurate propagation, without losing integrity

76 Shuchen Liu, Jan-Jöran Gehrt, Dirk Abel, and René Zweigel

of the initial guess [xa
0]. This will be validated in Sec. 3.2.1. Further, the size of

the boxes can be strongly reduced by the GNSS update. Considering the difficulty
of operating on multi-rate navigation system with GNSS measurement time delay,
only forward contractor with the following differential constraint is applied,

[xa](t+ dt) = [xa
0](t+ dt) ∩ ([xa](t) + dt · [ẋa](t)). (6)

As mentioned in Sec. 2.1, all the operations are carried out in NED coordinates,
such that ẋa is already given in Eq. (1): ẋa = [vn

eb cd]
T . The bounding box [ẋa]

is estimated with the output ẋa and its estimated covariance from the navigation
filter. The detailed contractor design and discretization are given in [13].

In practice, GNSS measurement is updated with the rate of ca. 10 Hz and with
a time delay of 50 ∼ 300 milliseconds. This time delay is a result of signal pro-
cessing from the GNSS receiver, after satellite signals are received by the antenna.
However, the navigation filter runs at 100 Hz, because a high-rate navigation so-
lution is necessary for autonomous vehicles. Considering the unnegligible delay, a
structure is proposed in Fig. 2, which is an example supposing GNSS time delay is
30 milliseconds.

Fig. 2 shows, when no GNSS update is available, the box at k + 1 step is
propagated using [xa

k] and [ẋa
k] from last step. Without additional information of

the initial box at k+1 step, the initial box [xa
0,k+1] is taken as [−inf , inf], such that

the part after ∩ symbol in Eq. 6 dominates the calculation. Once a GNSS update
is available, the time of GNSS measurement is estimated by comparing the current
time and measured time delay. The propagated box stored in the buffer is located
and used as the initial guess [xa

0] for the GNSS update, which is described in Sec.
2.3.3. After GNSS update, all the boxes until the current epoch are propagated
again and the corresponding buffer will be replaced.

Fig. 3 shows an one dimensional example, which illustrates the change of esti-
mated upper and lower bound before and after the GNSS update. In this example,
the GNSS measurement is received at k + 4 epoch (current) with time delay of 3
epochs, such that the GNSS update is carried out in the past (at k + 1 epoch).
The bounds at k + 1 epoch (black) are used as initial guess for GNSS update and
narrower bounds (blue) are estimated. The blue bounds are propagated using the
stored velocity information in memory until the current time (k + 4 epoch).

GNSS (time delay: 3 epochs)here:

[]X
a

0,k
[]X

a

0,k+1
[]X

a

0,k+2
[]X

a

0,k+3

[]X
a

0,k+4

[]X
a

k+1

[]X
a

k+2

[]X
a

k+3

Propagation

GNSS Update

In-/Output

Buffer Update

Figure 2: Propagation and GNSS update considering measurement delay

Identification of Multi-Faults in GNSS Signals using RSIVIA 77

epoch
k k+1 k+2 k+3 k+4

GNSS (time delay: 3 epochs)here:

Before GNSS Update

After GNSS Update

Reference Trajectory

Figure 3: One dimensional (1D) example of integrating velocity information and
resulting variance in GNSS update

2.5 Integration of RAIM

By integrating velocity information, RSIVIA does not start with an arbitrary box
anymore, which reduces the computational load. This can be further improved by
triggering the RSIVIA, when a GNSS update is necessary, instead of executing it
by each new GNSS measurement. Whether a GNSS update is necessary, is decided
by the RAIM fault detection result.

Algorithm 2 Integration velocity and RAIM information into RSIVIA at kth step

Function estimate box(in:xs
k,ρk, td,xk−1,P k−1, out:[x

a
k],fk)

1: Store xk−1 and P k−1 into buffer
2: if New GNSS measurement then
3: (fa, ε)← raim(xs

k, ρk, xk−1) Sec. 2.2
4: if fa = true | tc − tu > tu,max then
5: Estimate GNSS delay steps: nd ← td/T0

6: ([xa
k−nd

],fk)← gnss update([xa
k−nd

],xs
k,ρk, ε) Sec. 2.3.3

7: for i = k − nd + 1 to k do
8: ([xa

i])← C→d
dt

(xi−1,P i−1, [x
a
i−1]) Sec. 2.4

9: end for
10: else
11: ([xa

k])← C→d
dt

(xk−1,P k−1, [x
a
k−1])

12: end if
13: else
14: ([xa

k])← C→d
dt

(xk−1,P k−1, [x
a
k−1])

15: end if
16: return [xa

k], fk

Nevertheless, a situation should be avoided that no GNSS update is executed
for a long duration, when no fault is detected by RAIM. Therefore, a parameter
tu,max is introduced, which defines the maximum duration allowed between two

78 Shuchen Liu, Jan-Jöran Gehrt, Dirk Abel, and René Zweigel

GNSS updates. The detailed implementation is given in Alg. 2, where tc and tu
are the current time and time of last GNSS update, respectively. td is the GNSS
measurement time delay. To is the navigation filter sample time.

Furthermore, Alg. 2 proposes a new method of parameterizing the minimum
error bound ε of RSIVIA, which is a parameter used in Alg. 1. In [8], guaranteed
minimum outlier number estimator (GOMNE) is applied, which proposes to reduce
the error bound to half of the previous value (ε← ε/2), when the q-relax increases.
Still, the initial value of ε needed to be parametrized with this method. [2] dis-
cusses the choice of the error bound and the pseudorange quality by comparing
different settings of ε. However, a deterministic calculation of the error bound ε is
never given. By introducing the output of RAIM, both satellite constellation and
measurement quality are considered (Sec. 2.2).

3 Experimental Validation

In this section, the experimental results of the proposed approach for GNSS in-
tegrity monitoring as well as pseudorange measurements FDE are given. The re-
sults are divided into two parts: first, the evaluation of the dynamic propagation
using the velocity information; second, the validation of the FDE capability, the
computational load and the accuracy improvement.

3.1 Measurement Setup and Test Scenario

The sensor data is recorded on a 900 MHz single core rapid control prototyping
(RCP) unit, called MicroAutoBox II from dSPACE. GNSS signals are received and
decoded by a Septentrio AstRx3 HDC receiver at a rate of 10 Hz. The communi-
cation between the receiver and the RCP unit is achieved via serial interface. For
inertial measurement, the setup uses a LORD MicroStrain 3DM-GX4-25 industrial-
class 9 DOF IMU-sensor, which is connected via serial interface and provides accel-
erations, angular rates and magnetometer measurements at a rate of 100 Hz. The
receiver provides a pulse per second (PPS). Using the PPS, the communication and
processing delays of the receiver are measured (see [8]). In order to reproduce the
real-world test scenario in a post-processing environment, all sensors and GNSS
correction data are recorded.

Fig. 4 shows the bird eye view of the driven trajectory. The experiment is car-
ried out in the so-called ”T-Cross” in Berchtesgaden, Germany, because it is the
best test track for the visibility of all three base stations from GATE system. It
should be noticed that the driven path in this experiment is in open area. There-
fore, it is assumed that, except the generated feared events, the measurements from
other satellites are fault free. However, the testing scenario is only reproducible
by replay of the recorded data in post-processing environment, due to the chang-
ing environment in the reality, e.g. position of real satellites, ionosphere delay
and troposphere delay. The post-processing environment runs on the MATLAB &
Simulink platform on a laptop with an Intel Core i7-7700HQ CPU @ 2.80GHz.

Identification of Multi-Faults in GNSS Signals using RSIVIA 79

10 sec

30 sec40 sec

50 sec

60 sec

70 sec

80 sec

90 sec

100 sec

110 sec

120 sec
130 sec

140 sec
150 sec

160 sec

170 sec

180 sec190 sec200 sec

210 sec

215 sec

220 sec

230 sec

240 sec

250 sec260 sec

270 sec

280 sec

290 sec

300 sec

310 sec

Reference Trajectory

20 sec

100 m

Figure 4: Reference trajectory using a RTK capable GNSS receiver, ©2019
GeoBasis-DE/BKG (©2009), Google

During this drive, two feared events occur, which are range errors intentionally
generated by GATE system. These errors are visualized in Fig. 5, which shows the
pseudorange residuals of GPS and Galileo signals during this drive. The pseudo-
range residuals are calculated as the difference between measured and true pseu-
doranges. Here, true pseudoranges are estimated with the highly accurate RTK
reference solution and satellite positions. Fig. 5 shows that from second 108 to 172
and from second 188 to 252, the pseudorange residuals from four Galileo satellites
E10, E16, E17, E23 are extremely high. These are the two periods when feared
events occur, which is verified by the experiment report from IFEN GmbH. These
two periods are marked with the gray dashed lines in the following figures.

time in sec

0 50 100 150 200 250 300

pseudorange residual in m

0

10

20

30

40

50

60
G01
G08
G10
G11
G18
G20
G27
G32
E10
E11
E12
E16
E17
E19
E23
E24
E25

350

Figure 5: GNSS pseudorange residuals

80 Shuchen Liu, Jan-Jöran Gehrt, Dirk Abel, and René Zweigel

3.2 Experimental Results

3.2.1 Velocity Integration without GNSS update

In this section, dynamic propagation using velocity information is validated. The
box [xa] is initialized when the first GNSS measurement is available. After that,
the trust box is only propagated with the velocity information without further
GNSS update. Various parameter settings and potential situations are evaluated
and discussed. The three settings are:

• Setting 01: The trust box is propagated only with velocity information with-
out considering their variance, which means the velocity error bound is zero.

• Setting 02: The trust box is propagated in the same way as Setting 01. The
faulty GNSS measurements from E10, E16, E17, E23 are manually excluded.

• Setting 03: The trust box is propagated with velocity information and its
variance. The error bound of velocity is estimated with the approach from
Sec 2.3.2 without measurement relax using the estimated variance.

Experimental results are shown in Fig. 6. The three subfigures are the difference
between propagated upper and lower bounds of antenna position in NED coordi-
nates and their reference, respectively. It can be observed that with Setting 01
the lower and upper bounds are evenly distributed around the reference, before the
first feared event. During the first feared event, the propagated bounds in north
direction shift downwards, which makes the distance between the upper bound and
the reference smaller. During the second feared event, the bounds drift further
downwards and eventually cross the reference, which makes it an invalid propa-
gation. The reason is that the huge pseudorange error results in faulty velocity
estimation of the navigation filter. This can be verified with the Setting 02. After
excluding the feared event manually, the velocity propagation is valid during the
whole experiment. Introducing the estimated variance of the velocity estimation
solves this problem, which is verified with Setting 03. The width of the trust box
increases, when no GNSS update is carried out, because the width of the trust box
is the integration of velocity error bounds.

It can also be observed that the width of the trust box is no larger than 100 me-
ters, although there is no GNSS update in 300 seconds. This means, the confidential
level of the velocity information can be set higher, if periodic GNSS updates are
carried out. Because GNSS updates will reduce the size of trust box periodically,
this will not introduce much extra computational load.

3.2.2 Identification Correctness and Accuracy Improvement

In [11], a situation is described in the experimental validation chapter, that RAIM
with parity space fails to identify all faults in a very short period, while RSIVIA
is capable to identify all faulty pseudoranges. The comparison between RAIM and
RSIVIA under such condition is given in [11], and therefore, is not repeated in the
present publication. In this section, the GNSS update as well as the integration

Identification of Multi-Faults in GNSS Signals using RSIVIA 81

- 06

- 04

-20

0

20

40

time in sec

-100

-50

0

50

north in m

east in m

down in m

0 50 100 150 200 250 300

- 06

- 04

-20

0

20

40

- 08

Setting 01

Setting 02

Setting 03

350

Figure 6: Validation of trust box propagation using velocity information without
GNSS update: estimated upper and lower bounds minus the reference

of velocity information and RAIM are evaluated, with respect of identification
correctness, the accuracy improvement and the computational load. To achieve the
comparison of these, three settings are used in this section:

• Setting 04: GNSS update runs in 1 Hz. Each RSIVIA process starts with an
initial guess of an arbitrary big box.

• Setting 05: GNSS update runs in 1 Hz. The trust box is propagated with
velocity information (Sec. 2.4). RSIVIA starts with propagated trust box.

• Setting 06: The complete proposed approach in Sec. 2.5 is applied here. In
case of no RAIM fault alert, the maximum duration without GNSS update
tu,max is 60 seconds.

Fig. 7 shows the experimental results. The first subfigure shows the fault identi-
fication result from the three settings and the satellites availability during the test
drive. As already shown in Fig. 5, the pseudorange error gradually increases at the
beginning of each feared event. This type of pseudorange fault is introduced in [14]
as most hazardous fault model for snapshot integrity monitoring, because the state
estimation are corrupted before the fault is identified.

This can be verified by Fig. 7. When the first feared even starts (at 108.4
seconds), the erroneous pseudorange is first identified with Setting 06 (at 109.87
seconds), then with Setting 04 (at 110.20 seconds) and finally with Setting 05 (at
110.67 seconds). The reason of the identification delay with Setting 04 and 05 is,
that the GNSS update runs in 1 Hz due to the high computational load, while

82 Shuchen Liu, Jan-Jöran Gehrt, Dirk Abel, and René Zweigel

Setting04
Setting05
Setting06
Without Integrity

2D error in m

0

5

10

15

20

G01
G08
G10
G11
G18
G20
G27
G32
E10
E11
E12
E16
E17
E19
E23
E24
E25

satellite status and fault identification results

time in sec

0 50 100 150 200 250 300

Setting 04

Setting 05

Setting 06

Available

Unavailable

350

Figure 7: Validation of fault identification and accuracy improvement

the GNSS measurements are received in 10 Hz. Furthermore, the GNSS update is
triggered timely by RAIM with Setting 06. Although the time difference of first
fault identification among three Settings is tiny, it results in significant difference
in state estimation.

The second subfigure shows the 2D error as a measure of state estimation quality.
Without FDE, the 2D error remains between 10 meters to 16 meters during the
feared events. With Setting 04 and 05, the 2D error increases up to 14 meters and
12 meters, respectively, and converges slowly towards the accuracy without feared
events. With Setting 06, the 2D error increases slightly to 3.7 meters, because the
fault is identified earlier, and converges quickly to 1 meter.

Finally, the computation time is evaluated. The post-processing takes 81.70
seconds without integrity monitoring, which is the baseline of computation time.
Further, the post-processing takes 276.68, 171.51 and 121.89 seconds with Setting
04, 05 and 06, respectively. Considering that GNSS update runs at 1 Hz both with
Setting 04 and 05, the number of GNSS updates is the same. By introducing the
velocity information to reduce the size of the initial guess, the average computation
time of each GNSS update is reduced by 53.94 %, which is very important for the
future real-time implementation. In contrast, RAIM reduces the total computation
time by reducing the number of GNSS updates, instead of reducing the average
computation time. Therefore, RAIM may not improve the real-time computational
performance very much. However, introducing RAIM provides a more timely fault
identification, which improves the accuracy of navigation solution.

Identification of Multi-Faults in GNSS Signals using RSIVIA 83

4 Conclusion

This publication presented the development of an integrity system as an extension
of a tightly-coupled navigation filter within the joint-project GALILEOnautic 2.
The main purpose of the integrity system is FDE of multi-faults in pseudorange
measurements, such that a set of fault-free GNSS measurements can be fed into
the navigation filter. In this work, a RSIVIA based FDE strategy is proposed,
which involves RAIM with parity space and velocity estimation from the navigation
filter. With respect to the experimental evaluation, an offline post-processing using
data from GATE Berchtesgaden is carried out. In this experiment, multiple feared
events are intentionally generated, which are correctly identified by the proposed
approach. The measurement campaign evaluations visualize that this approach
improves notably both the accuracy and robustness of the navigation filter and
reduces significantly the computational load compared to the traditional RSIVIA.

In future works, a real time implementation of the designed approach is aimed.
On this basis, an integrity monitoring system for all sensors integrated into the
navigation system will be developed, which considers IMU, DVL and GNSS mea-
surements. FDE will be performed on all measurements, which are used by the
navigation filter, to enhance the navigation filter reliability.

References

[1] Brown, R.G. A baseline GPS RAIM scheme and a note on the equivalence of
three RAIM methods. Journal of The Insititute of Navigation, 39(3):301–316,
1992. DOI: 10.1002/j.2161-4296.1992.tb02278.x.

[2] Dbouk, H. and Schön, S. Comparison of different bounding methods for pro-
viding GPS integrity information. In 2018 IEEE/ION Position Location and
Navigation Symposium (PLANS), pages 355–366, Piscataway, NJ, 2018. IEEE.
DOI: 10.1109/PLANS.2018.8373401.

[3] Drevelle, V. and Bonnifait, P. High integrity GNSS location zone characteri-
zation using interval analysis. Proceedings of the 22nd International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION GNSS
2009), pages 2178–2187, 2009.

[4] Drevelle, V. and Bonnifait, P. A set-membership approach for high integrity
height-aided satellite positioning. GPS Solutions, 15(4):357–368, 2011. DOI:
10.1007/s10291-010-0195-3.

[5] European Global Navigation Satellite System Agency. GSA GNSS Market
Report 2019. Publications Office of the European Union, 2019.

[6] Gehrt, J.-J., Zweigel, R., Konrad, T., and Abel, D. DVL-aided navigation filter
for maritime applications. 11th IFAC Conference on Control Applications in
Marine Systems, Robotics and Vehicles (IFAC CAMS 2018), pages 418–423,
2018. DOI: 10.1016/j.ifacol.2018.09.451.

84 Shuchen Liu, Jan-Jöran Gehrt, Dirk Abel, and René Zweigel

[7] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. Applied Interval Analysis.
Springer, 2001. DOI: 10.1007/978-1-4471-0249-6.

[8] Jaulin, L., Kieffer, M., Walter, E., and Meizel, D. Guaranteed robust nonlin-
ear estimation with application to robot localization. IEEE Transactions on
Systems, Man and Cybernetics, Part C (Applications and Reviews), 32(4):374–
381, 2002. DOI: 10.1109/TSMCC.2002.806747.

[9] Konrad, T., Breuer, M., Engelhardt, T., and Abel, D. State estimation for
a multirotor using tight-coupling of GNSS and inertial navigation. IFAC-
PapersOnLine, 50(1):11683–11688, 2017. DOI: 10.1016/j.ifacol.2017.08.

1684.

[10] Liu, S., Gehrt, J.-J., Abel, D., and Zweigel, R. Dual-constellation aided high
integrity and high accuracy navigation filter for maritime applications. Pro-
ceeding of the 2019 International Technical Meeting of The Institute of Navi-
gation (ION ITM), pages 762–774, 2019. DOI: 10.33012/2019.16723.

[11] Liu, S., Gehrt, J.-J., Abel, D., and Zweigel, R. Integrity of dual-constellation
aided navigation filter in safety-critical maritime applications. European jour-
nal of navigation, 19(3):10–17, 2019.

[12] Pervan, B., Lawrence, D., Cohen, C., and Parkinson, B. Parity space methods
for autonomous fault detection and exclusion using GPS carrier phase. Position
Location and Navigation Symposium, pages 649–656, 1996. DOI: 10.1109/

PLANS.1996.509141.

[13] Rohou, S., Jaulin, L., Mihaylova, L., Le Bars, F., and Veres, S.M. Guaranteed
computation of robot trajectories. Robotics and Autonomous Systems, 93:76–
84, 2017. DOI: 10.1016/j.robot.2017.03.020.

[14] Tanil, C., Khanafseh, S., Joerger, M., and Pervan, B. Sequential integrity
monitoring for kalman filter innovations-based detectors. In Proceedings of the
31st International Technical Meeting of The Satellite Division of the Institute
of Navigation (ION GNSS+ 2018), pages 2440–2455. Institute of Navigation,
2018. DOI: 10.33012/2018.15975.

Acta Cybernetica 25 (2021) 85–99.

Validated Trajectory Tracking using Flatness

Olivier Mullierab and Julien Alexandre dit Sandrettoac

Abstract

The problem of a safe trajectory tracking is addressed in this paper. The
method consists in using the results of a validated path planner: a set of safe
trajectories. It produces the set of controls to apply to remain inside this set
of planned trajectories while avoiding static obstacles. The computation is
performed using the differential flatness property of many dynamical systems.
The method is illustrated in the case of the Dubins car model.

Introduction

In the context of cyber-physical systems, the problem of validated trajectory track-
ing is addressed. It consists in driving a controlled differiential system from an
initial state region to a given target region while avoiding collisions with static ob-
stacles. The general method relies on two steps: (i), a path planning provides one
path from the initial state to the final state and, (ii), a trajectory tracker computes
the controls that will be given to the actual controlled system to follow this planned
path. When the system is critical, it is mandatory to bring certainty on the non
violation of the constraints on the system, even when uncertainties on the model
and/or the control to be applied occur.

Related Work

A classical way for the path planning is to use the RRT algorithm [11] (Rapidly-
exploring Random Tree) and its variants. In [21, 20, 2], it has been successfully
adapted to the case of critical systems where guarantees on the result are manda-
tory and where uncertainties have to be considered. This adaptation of the RRT
algorithm uses of a set-membership computation, interval analysis, to no longer
produce a trajectory to track but a set of possible trajectories with the property
that no static obstacle can collides with the system when in this set. The generic
algorithm is then called the box1 RRT algorithm [21]. The differential flatness

aENSTA PARIS, 828 Boulevard des maréchaux, 91120 Palaiseau, France, E-mail:
{lastname}@ensta.fr

bORCID: https://orcid.org/0000-0003-1439-746X
cORCID: https://orcid.org/0000-0002-6185-2480
1box is refering to the cartesian product of intervals, see Section 1.1.

DOI: 10.14232/actacyb.285729

86 Olivier Mullier and Julien Alexandre dit Sandretto

of some controlled systems is well known and studied for the control of nonlinear
systems (see, e.g. [13, 5, 6, 15]). Flatness has already been successfully applied to
trajectory tracking in the case of discrete time systems [18].

Contribution

The work here considers that a previous computation of a set of validated path
planner is performed and it results in a set of safe trajectories that avoid any static
forbidden area. From this set, one particular path is chosen to be tracked, it is
done with the computation of a cubic Hermite spline from the system position and
the desired trajectory translated in the flat output space. The controls are then
produced using an endogenous dynamic feedback using flatness.

This work is presented as follows. Section 1 recalls the notions necessary to
the presentation of our work: interval analysis, validated numerical integration
of controlled systems, box RRT algorithm and cubic Hermite spline computation.
Section 2 contains the main results of our work that is the validated tracking of a
trajectory guarranteed to avoid any static obstacle. It is then illustrated in Section 3
with the computation of the controls given to a robot to drive from a set of initial
states to a target area using the Dubins car model. Conclusion and discussions
ends our work presentation.

1 Preliminaries

This section is dedicated to the preliminary results our work is based on and in-
troduces the notions that are used through this article. Some recalls on interval
analysis and validated numerical integration scheme, differential flatness, trajectory
planning and cubic Hermite spline are given.

1.1 Interval Analysis

Interval analysis [17] is a method designed to produce outer-approximation of the
set of possible values for variables occurring in some computations in a sound
manner. Hereafter, an interval is denoted [x] = [x, x] with x � x and the set of
intervals is IR = {[x] = [x, x] | x, x ∈ R, x � x}. The Cartesian product of
intervals [x] ∈ IR

n is a box (through this paper, vectors are represented in bold
font). The main result of interval analysis is its fundamental theorem [16] stating
that the evaluation of an expression using intervals leads to an outer-approximation
of the resulting set of values for this expression whatever the values considered in
the intervals.

For a given function f : Rn → R
m and a box [x] ⊂ R

n, an interval inclusion
function also known as interval extension [f] of f can be defined and an evaluation of
[f] over [x] gives a box [y] such that (∀x ∈ [x])(∃y ∈ [y])(y = f(x)) or equivalently,
the box [y] contains {f(x)|x ∈ [x]} the range of f over [x]. Examples of interval
extension are the natural interval extension where interval arithmetic is used to

Validated Trajectory Tracking using Flatness 87

replace all operations defining a function to its interval counterpart and the mean
value extension where the function to be extended is first linearized on a point and
a natural extension of the resulting function is applied. The interested reader can
refer, for example, to [17, 10] and references therein for more details.

1.2 Validated Numerical Integration of Controlled Systems

In our work, we deal with controlled differential systems of the form{
ẋ = f(x,u)

x(0) ∈ [x0]
(1)

with f : Rn × R
m → R

n a smooth function, x ∈ R
n the state vector of the system

and u ∈ [u] ⊆ R
m the control vector. The problem to integrate the controlled

system in Eq. (1) is to compute the value of the state vector at a time t, x(t, x0, u)
with x0 ∈ [x0] and u ∈ [u]. By considering u as constant during the time the system
is integrated, the problem in Equation (1) corresponds to solving the (ordinary)
differential equation {

ẋ = fu(x)

x(0) ∈ [x0]
(2)

with fu being a function parameterized by the the control u. The use of vali-
dated numerical integration on ODE for the problem in Equation (2) allows the
design of an interval inclusion function of x(t, x0, u). It provides the computation
of [x] (t; [x0] , [u]) which stands for an outer approximation of the solution of the
problem in Equation (1): {x(t;x0,u),x0 ∈ [x0] ,u ∈ [u]}. It corresponds to the set
of values that can take the state x at time t starting from any point x0 ∈ [x0] for
all controls u ∈ [u] applied to the system. Any bounded uncertainty in the model
can also be handled by representing it with a time constant parameter as done with
the control u in Eq. (2).

To integrate the system until time t, a sequence of time instants t1, . . . , tn
such that t1 < · · · < tn = t and a sequence of boxes [x1] , . . . , [xn] such that
x(ti+1; [xi] , [u]) ⊆ [xi+1], ∀i ∈ {0, . . . , n − 1} are computed with [xi] an outer ap-
proximation of the set of the state vectors at time ti. From the box [xi], computing
the box [xi+1] is a classical 2-step method (see [14, 19]):

Phase 1 (Picard-Lindelof operator) compute an a priori enclosure [xi,i+1] of the
set

{x(tk;xi,u) | tk ∈ [ti, ti+1] ,xi ∈ [xi] ,u ∈ [u]} ⊆ [xi,i+1]

such that x(tk; [xi] , [u]) is guaranteed to exist and is unique,

Phase 2 compute an enclosure [xi+1] of the solution at time ti+1.

By repeating this process iteratively, we are able to produce an outer approximation
of the system described in Equation (1) (see Figure 1). This scheme is used by the
box RRT algorithm to compute a set of validated paths.

88 Olivier Mullier and Julien Alexandre dit Sandretto

time

st
a
te

a priori enclosure [xi,i+1]

tighter approx. [xi+1]

t

Figure 1: Illustration of the two-step method for the validated numerical integration
of dynamical systems. i = 1, ..., 5.

1.3 The Box RRT Algorithm

The first part of the proposed method is to compute a set of validated trajectories.
The box RRT algorithm and its improvements [2, 20] is a set of motion planner
for robotic vehicles that guarantees to avoid static obstacles. It uses the data
structures of the Rapidly-exploring Random Trees (RRT) to explore the state space.
A tree of random subpaths is constructed until the goal is reached while any static
obstacle is avoided. When the algorithm ends successfully, it provides, among other
information, a set of boxes guaranteed to avoid any defined static obstacle. The
result is in the form of a list of boxes {[x1] , . . . , [xN]} all sorted by the time they
are reached (see, for example, Figure 5 representing an example of the result of the
algorithm described thereafter in Section 3). The box RRT algorithm provides
also the control used during the seek of the set of trajectories but this information
is not mandatory to the use of our method afterwards. Indeed, the box RRT can
be used with a simplified model for the controlled dynamical system and then the
controls u it uses are no longer relevant for the trajectory tracking part.

1.4 Differential Flatness

The differential flatness of dynamical systems is a structural property that a (pos-
sibly nonlinear) differential system can have. A system is differentially flat if
there exists a set of independent variables (equal in number to the dimension of the
control vector) referred to as flat outputs such that all states and controls of the
system can be expressed in terms of those flat outputs and a finite number of their
successive time derivatives. The mathematical definition of differential flatness is
provided in Definition 1.

Validated Trajectory Tracking using Flatness 89

Definition 1 (Differential flatness [6]). The controlled dynamical system

ẋ = f(x,u) (3)

with x ∈ R
n, u ∈ R

m is flat if there exist the maps h : Rn × (Rm)r+1 → R
m,

ϕ : (Rm)r → R
n and ψ : (Rm)r+1 → R

m such that

z = h
(
x,u, u̇, . . . ,u(r)

)
x = ϕ

(
z, ż, . . . , z(r−1)

)
u = ψ

(
z, ż, . . . , z(r−1), z(r)

)
A differentially flat system can be caracterized when considering a subset of

its state and control vectors and their associated derivatives. As recalled in the
following, a trajectory can be tracked in a flat output space. An example of
differentially flat system is given hereafter in Section 3.2.

1.5 Trajectory Tracking

The differential flatness makes possible to control a system by only using the flat
output. The next definition recalls the endogenous dynamic feedback [7] in the case
of a differentially flat system.

Definition 2 (Endogenous dynamic feedback using flatness). We consider the flat
system described in Eq. (3) with a flat output z and a given trajectory zd : R→ R

m.
Once the flat system is differentiated enough to get an equation of the type

z(p) = ω, (4)

the system can be stabilized around a trajectory by stabilizing the flat output with ω
defined as a particular control:

ω = z
(p)
d − k0(z− zd)− k1(ż− żd)− · · · − kp−1(z

(p−1) − z
(p−1)
d) (5)

with z(i) the i−th time derivative of z and k0, . . . , kp−1 such that the polynomial
sp = kp−1s

p−1 + · · ·+ k1s+ k0 has only roots with negative real part. It results in
the tracking error converging and stable.

The goal is now to construct this function zd(t) providing a trajectory in the
flat output space. In our context, it is done using the cubic Hermite splines.

1.6 The Cubic Hermite Splines

In order to use endogenous dynamic feedback using flatness, we have to compute
one particular trajectory zd from the initial state to the target the robot will have
to follow. An intermediary desired goal is required to be reached iteratively until
we reach the goal. The cubic Hermite splines [8, 4] are one way to achieve this (see,
e.g. [12] for a use in path planning and [9] for one in trajectory tracking).

90 Olivier Mullier and Julien Alexandre dit Sandretto

Definition 3 (Cubic Hermite Spline). Let φ : R → R
n be a diffentiable function,

t0, t1 ∈ R and two positions p0 = φ(t0) and p1 = φ(t1) with the derivatives
m0 = φ̇(t0) and m1 = φ̇(t1) respectively, the cubic Hermite spline is

P (t) = p

(
t− t0
t1 − t0

)
(6)

with

p(t) = h00(t)p0 + h10(t)m0(t1 − t0) + h01(t)p1 + h11(t)m1(t1 − t0) (7)

and

h00(t) = 2t3 − 3t2 + 1

h10(t) = t3 − 2t2 + t

h01(t) = −2t3 + 3t2

h11(t) = t3 − t2.

The error between the spline P (t) and the true trajectory φ(t) can be easily
computed as follows: there exists τ such that

φ(t)− P (t) =
φ(k)(τ)

k!

∏
i

(t− ti)
ki (8)

with k the number of points, ki the number of known derivatives + 1. In our case,
the number of points is 2 and the number of derivatives is 2.

This error can be approximated using interval analysis as follow: in the time
interval [t0, t1] where the spline is defined, The error can be outer approximated by
the interval function [E] (t, [t0, t1]) such that:

φ(t)− P (t) ∈ [E] (t, [t0, t1]) =

[
φ̈
]
([t0, t1])

2
(t− t0)

3(t− t1)
3, ∀t ∈ [t0, t1] (9)

with
[
φ̈
]
an interval inclusion function of the second time derivative of φ. In

practice, the model being provided, the second (as well as the first) derivative over
time of φ is also available by symbolically derivating the system over time prior
to the execution of the method. A guaranteed cubic Hermite spline [P] (t) then
consists in adding this box error:

[P] (t) = P (t) + [E] (t, [t0, t1])

2 Validated Trajectory Tracking using Flatness

This section is dedicated to the main results on validated trajectory tracking us-
ing flatness. We consider a controlled dynamical system of the form described in
Equation (1).

Validated Trajectory Tracking using Flatness 91

Path

planner

[xB]
{[xO]1 , . . . , [xO]N} Spline{[xd]1 , . . . , [xd]N}

Plant Controlleru

z̃d[x]r

Flat

output

[zd]i

Figure 2: Block diagram representing the different components in our controller.

In this problem, the initial condition is assumed to be inside a set of values here
defined as a box [x0] and a goal [xG] is also provided such that the goal is eventually
reached at a bounded time tf � T , as stated by the quantified proposition

(∃u(t) : R→ R
m)(∃tf ∈ [0, T])(x(tf) ∈ [xG]). (10)

A set of obstacles [x]O,1 , . . . , [x]O,N is also defined and the trajectory x(t) verifying
Eq. (10) must avoid them:

(∀i = 1, . . . , N)(∀t ∈ [0, tf])(x(t) /∈ [x]O,i). (11)

The goal of trajectory tracking is then to produce the control function u(t) such
that the system follows a trajectory that respects the propositions in Equations (10)
and (11) dealing with uncertainties maybe occurring in the model and the set of
initial and final positions. A validated numerical integration scheme as described in
Section 1.2 using interval analysis is used. We present here the method to produce
the controls that allows a cyberphysical system to follow a path. The block diagram
corresponding to the control strategy is given in Figure 2 and Algorithm 1 provides
a sketch of the proposed method after the path planner provided its result.

Path planner The initial position of the robot [xB], the goal [xG] and the set
of obstacles {[xO]1 , . . . , [xO]N} are first given to the path planner which in return
gives a set of guaranteed trajectories {[xd]1 , . . . , [xd]N}.

Flat output Using flatness, a box [zd]i in the flat output space is provided
from the result of the path planner. This box [zd]i contains the current flat output
of the robot [zr] according to its current position [xr].

Spline A cubic Hermite spline is then computed to return the next desired flat
output z̃d for the robot. It is illustrated in Fig. 3. A particular point z̃d;i+1 ∈ [zd]i+1

is chosen to be the desired flat output for the robot (we chose the midpoint of
[zd]i+1). The spline P (t) is constructed from a point z̃r in the flat output of the
robot (we chose the midpoint of [zr] as well) to the chosen point z̃d,i+1. The
guarranteed spline [P] (t) is also computed and a verification on it is done to check
is it remains in the union [zd]i ∪ [zd]i+1. If the verification fails, a new endpoint for
the spline is chosen, one inside the intersection [zd]i ∩ [zd]i+1. An intermediary
point z̃d on the spline is chosen to be the next position to reach for the robot.

92 Olivier Mullier and Julien Alexandre dit Sandretto

Input: {[zd]i}: the result of the guaranteed path planner in the flat
output space

1.1 while the robot has not arrived do
// Flat output

1.2 [zr]: the flat output of the robot from its current position [xr]
1.3 [zd]i: box the robot is in (([zr]) ⊆ [zd]i)
1.4 z̃d;i+1 = mid([zd]i+1)

// Spline

1.5 P (t) : the Hermite spline between mid([zr]) and z̃d;i+1

1.6 z̃d : next reference point on the spline for the robot
// Controller

1.7 computation of the controls using dynamic feedback with flat output zr
and z̃d for the robot to reach z̃d

// Plant

1.8 [xr] : new position of the robot after applying the controls

1.9 end

Algorithm 1: Sketch of the proposed method for the tracking of the trajectory
provided by guaranteed path planner algorithm (sketch with correspondance
with the block diagram in Fig. 2).

[z]d;i

[z]d;i+1

z̃d;i

z̃d;i+1

z̃r

z̃d

P (t)

Figure 3: Computation of the next control from the computation of the cubic
Hermite spline.

Validated Trajectory Tracking using Flatness 93

Controller All required information for the computation of a new control are
provided: the spline provides the reference point z̃d and the current flat output [zr]
of the robot is also known. Their time derivatives are directly known as well and
a new control can be computed using the classical endogenous dynamic feedback
using flatness as described in Definition 2. The control is then tested using a
guaranteed numerical integration scheme to validate that the robot will not leave
the set of guaranteed trajectories from the path planner in the same time horizon
the controls will be applied to the robot. In the case the test fails, the time horizon
and/or the choice on the reference point z̃d should be modified. This change is not
discussed in this article.

Plant The control is applied to the robot. It eventually provides the new
position [xr] of the robot and the process can start again until the goal [xG] is
reached ([xr] ⊆ [xG]).

The next section illustrates this method on a classical Dubins car model.

3 Experiments on the Dubins Car Model

In this section is given an example of the use of the method introduced in Section 2
on the Dubins car model.

3.1 Implementation

The experiment has been conducted using a C++ implementation of the trajectory
tracking coupled with a C++ implementation of the box RRT algorithm. All the
tests have been made by simulating the behaviour of the dynamical system in a
guaranteed manner. The validated numerical integration part has been handled
using the C++ library DynIbex2 [1], a plugin of Ibex [3] on the Dubins car model,
described in the following.

3.2 The Dubins Car Model

We consider the Dubins car model⎧⎪⎨⎪⎩
ẋ = v cos θ

ẏ = v sin θ

θ̇ = u

(12)

with (x, y)T the position of the car and θ its angle to the coordinate system. The
controls (u, v) are the angular and the longitudinal speeds of the vehicle respectively
(see Figure 4 for an illustration of the Dubins car model).

It has been proved that this system is flat [13] and z = (x, y)T is a flat output.
Indeed the state and the control variables can be written using x and y and their

2Available at: https://perso.ensta-paris.fr/~chapoutot/dynibex/

94 Olivier Mullier and Julien Alexandre dit Sandretto

O

O′

x

y
O′

θ

Figure 4: The Dubins car model.

derivatives: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = z1

y = z2

θ = tan−1
(

ẏ
ẋ

)
= tan−1

(
ż2
ż1

)
v =

√
ẋ2 + ẏ2 =

√
ż21 + ż22

u = ÿẋ−ẍẏ
ẋ2+ẏ2 = z̈2ż1−z̈1ż2

ż2
1+ż2

2
.

The set of available positions provided by the box RRT algorithm directly gives
the flat output which is the position of the robot. In Figure 5 is given an example
of the set of boxes returned by the box RRT algorithm. The black boxes represent
the safe set of trajectories, the red ones are the obstacles, the blue one is the goal
and the green dots are the centers of the black boxes (the safe set of trajectories).
The set of trajectories given by the path planner (here the box RRT algoritm) is
not optimal but it is not an issue for our method. We apply the controls produced
by the method described in Section 2 and the results are shown in Figure 6. As in
Figure 5 the result of the box RRT is still in black, the obstacle are in red and the
goal is in blue. The green dots are the successive centers of the boxes containing the
position of the robot after each application of the computed controls and the red
dots are the reference points computed with the cubic Hermite splines. To make
the figure more readable, only the centers of the position boxes of the robot are
shown. At each step of the control to the goal, the box containing the robot [xr] is
checked to remain inside the black boxes of the box RRT algorithm as long as the
guaranteed numerical simulation of the application of the control to the robot.

Validated Trajectory Tracking using Flatness 95

Figure 5: Example of the result provided by the box RRT algorithm. Red boxes:
static obstacles ; blue: goal ; black: validated set of trajectories; green dots: center
of the black boxes.

96 Olivier Mullier and Julien Alexandre dit Sandretto

Figure 6: Example of the result of the controls computed to follow the set of
trajectories from the box RRT algorithm (same as in Figure 5). Red boxes: static
obstacles ; blue: goal ; black: validated set of trajectories; green dots: center of
the robot position boxes. red dots (magnified): reference points from the cubic
Hermite spline computation.

Validated Trajectory Tracking using Flatness 97

4 Conclusion

A validated trajectory tracking using flatness has been presented. From a guaran-
teed set of trajectory planner which provides an a priori set of guaranteed paths,
our method uses flatness to perform the computation of the controls. The Interme-
diary reference points for the system are provided using guaranteed cubic Hermite
splines. Eventually, the control to apply is proved to fulfill the requirements by
simulating in a set-membership manner the use of the controls on the system. It
allows to prove it remains inside the set of paths. This method has been illustrated
with an example of a terrestrial robot with a flat system model. The next step
will be to apply this method on a real robotic platform to validate the method
in the context of an embedded system. An extra step is required to compute
the control while the robot has not already reached its local goal provided by the
cubic Hermite spline. Another improvement will be to take into account dynamical
obstacles. It should be done by recalling the path planner each time a potential
collision is detected. Eventually the method must be extended to the case of non
flat systems.

Acknowledgment

This work has been partially supported by a DGA AID project.

References

[1] Alexandre dit Sandretto, Julien and Chapoutot, Alexandre. Validated explicit
and implicit Runge–Kutta methods. Reliable Computing, 22(1):79–103, Jul
2016.

[2] Alexandre dit Sandretto, Julien, Chapoutot, Alexandre, and Mullier, Olivier.
Formal verification of robotic behaviors in presence of bounded uncertainties.
In 2017 First IEEE International Conference on Robotic Computing (IRC),
pages 81–88. IEEE, 2017. DOI: 10.1109/IRC.2017.17.

[3] Chabert, Gilles et al. Ibex, an interval-based explorer. http://www.ibex-lib.
org/, 2007.

[4] De Boor, Carl. A practical guide to splines, volume 27. Springer-Verlag New
York, 1978. DOI: 10.2307/2006241.

[5] Fliess, M, Lévine, J, Martin, Ph, Ollivier, F, and Rouchon, P. Controlling non-
linear systems by flatness. In Systems and Control in the Twenty-first Century,
pages 137–154. Springer, 1997. DOI: 10.1007/978-1-4612-4120-1_7.

[6] Fliess, Michel, Lévine, Jean, Martin, Philippe, and Rouchon, Pierre. Flat-
ness and defect of non-linear systems: introductory theory and examples.

98 Olivier Mullier and Julien Alexandre dit Sandretto

International journal of control, 61(6):1327–1361, 1995. DOI: 10.1080/

00207179508921959.

[7] Fliess, Michel, Lévine, Jean, Martin, Philippe, and Rouchon, Pierre. A Lie–
Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE
Transactions on Automatic Control, 44(5), 1999. DOI: 10.1109/9.763209.

[8] Hermite, Charles. Sur la théorie des fonctions elliptiques. Comptes rendus de
l’Académie des sciences, 57:613, 1863.

[9] Hintzen, Niels T, Piet, Gerjan J, and Brunel, Thomas. Improved estimation of
trawling tracks using cubic Hermite spline interpolation of position registration
data. Fisheries Research, 101(1-2):108–115, 2010. DOI: 10.1016/j.fishres.

2009.09.014.

[10] Jaulin, Luc, Kieffer, Michel, Didrit, Olivier, and Walter, Eric. Interval analysis.
In Applied interval analysis, pages 11–43. Springer, 2001. DOI: 10.1137/

1009099.

[11] LaValle, Steven M. Rapidly-exploring random trees: A new tool for path
planning. Technical report, 1998.

[12] Lekkas, Anastasios M and Fossen, Thor I. Integral los path following for
curved paths based on a monotone cubic Hermite spline parametrization. IEEE
Transactions on Control Systems Technology, 22(6):2287–2301, 2014. DOI:
10.1109/TCST.2014.2306774.

[13] Levine, Jean. Analysis and control of nonlinear systems: A flatness-based
approach. Springer Science & Business Media, 2009. DOI: 10.1007/

978-3-642-00839-9.

[14] Lohner, Rudolf J. Computation of guaranteed enclosures for the solutions of
ordinary initial and boundary value problems. In Institute of mathematics and
its applications conference series, volume 39, pages 425–425. Oxford University
Press, 1992.

[15] Ma, Dailiang, Xia, Yuanqing, Shen, Ganghui, Jia, Zhiqiang, and Li, Tianya.
Flatness-based adaptive sliding mode tracking control for a quadrotor with dis-
turbances. Journal of the Franklin Institute, 355(14):6300–6322, 2018. DOI:
10.1016/j.jfranklin.2018.06.018.

[16] Moore, R. E. Interval Analysis. Series in Automatic Computation. Prentice
Hall, 1966. DOI: 10.1137/1009099.

[17] Moore, Ramon E, Kearfott, R Baker, and Cloud, Michael J. Introduction to
interval analysis, volume 110. Siam, 2009. DOI: 10.1137/1.9780898717716.

[18] Mullier, Olivier and Courtial, Estelle. Set-membership computation of admis-
sible controls for the trajectory tracking. Reliable Computing, 2017.

Validated Trajectory Tracking using Flatness 99

[19] Nedialkov, Nedialko S, Jackson, Kenneth R, and Corliss, George F. Vali-
dated solutions of initial value problems for ordinary differential equations.
Applied Mathematics and Computation, 105(1):21–68, 1999. DOI: 10.1016/

S0096-3003(98)10083-8.

[20] Panchea, Adina, Chapoutot, Alexandre, and Filliat, David. Extended reliable
robust motion planners. 56th IEEE Conference on Decision and Control, Dec
2017. DOI: 10.1109/CDC.2017.8263805.

[21] Pepy, Romain, Kieffer, Michel, and Walter, Eric. Reliable robust path plan-
ner. In 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1655–1660. IEEE, 2008. DOI: 10.1109/IROS.2008.4650833.

Acta Cybernetica 25 (2021) 101–125.

Prospects on Solving an Optimal Control Problem

with Bounded Uncertainties on Parameters using

Interval Arithmetic

Etienne Bertinabc, Elliot Brendelad, Bruno Hérisséae,
Julien Alexandre dit Sandrettobf, and Alexandre Chapoutotbg

Abstract

An interval method based on Pontryagin’s Minimum Principle is pro-
posed to enclose the solutions of an optimal control problem with embedded
bounded uncertainties. This method is used to compute an enclosure of all
optimal trajectories of the problem, as well as open loop and closed loop enclo-
sures meant to validate an optimal guidance algorithm on a concrete system
with inaccurate knowledge of the parameters. The differences in geometry
of these enclosures are exposed, and showcased on a simple system. These
enclosures can guarantee that a given optimal control problem will yield a
satisfactory trajectory for any realization of the uncertainties. Contrarily,
the probability of failure may not be eliminated and the problem might need
to be adjusted.

Keywords: optimal control, Pontryagin’s principle, interval arithmetic,
bounded uncertainties, penalization

1 Introduction

Optimal control of aerospace systems is performed by modeling the considered
system by dynamics depending on multiple uncertain parameters (for example,
aerodynamic coefficients, mass,...). Usually, optimal control problems are solved
for nominal values of these parameters, as in Figure 1. Then the robustness of the
solution is demonstrated by dispersing the parameters around nominal values with

aDTIS, ONERA, Université Paris Saclay, F-91123 Palaiseau, France, E-mail:
firstname.lastname@onera.fr

bU2IS, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France. E-mail:
firstname.lastname@ensta-paris.fr

cORCID: https://orcid.org/0000-0003-4245-2964
dORCID: https://orcid.org/0000-0002-0458-4993
eORCID: https://orcid.org/0000-0002-9241-0810
fORCID: https://orcid.org/0000-0002-6185-2480
gORCID: https://orcid.org/0000-0002-7230-0710

DOI: 10.14232/actacyb.285798

102 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

r0rT
z coordinate

r0

rT

v0 vT
z velocity

v0

vT

x
ve
lo
ci
ty

0 T
time

0.0

0.5

1.0

co
nt
ro
l
(t
h
ru
st

ve
ct
or
)

||u(t)||
ux(t)

uz(t)

Figure 1: Optimal trajectory, velocity space trajectory and control for Goddard’s
re-entry problem in Cartesian Geo-centered coordinates1. In green the boostback
burn, in thin blue the ballistic phase and in red the landing burn. Burn phases
are characterized by a saturated control (||u|| = 1) and a dash in velocity space,
while ballistic phases are characterized by no control (||u|| = 0). The model, the
parameters and the initial and final positions are taken from [4]. More details on
the model and boundary conditions are given in Section 5.

Monte Carlo simulations [5]. Another approach is to solve a chance constrained
optimal control problem in order to guarantee a probability of success [7]. These
methods do not exclude the eventuality of failure, which can be problematic on crit-
ical systems. In addition these problem-solving methods often introduce numerical
approximations, which question the validity of the results.

Interval arithmetic has shown their ability to address several control problems
[9], providing validated solutions while dealing with method uncertainties (numer-
ical approximations) as well as with model uncertainties (unknown but bounded
parameters). For instance the reachable set of a dynamic system can be over-
approximated. This over-approximation can demonstrate that a system will remain

1Standard coordinates for rocket trajectory are altitude and latitude; Cartesian coordinates
were chosen instead to allow some consistency with figures in Section 5

Bounded Uncertainties in Optimal Control Problems 103

out of a critical region, thus guarantee its safety [2]. These methods can also be
used to design robust optimal control. For instance, [11, 12] propose algorithms
to compute a control that stirs a system to a desired state for any realization of a
bounded noise while achieving the lowest upper bound on the cost.

Pontryagin’s Maximum Principle [13] (PMP) provides necessary optimality con-
ditions for the resolution of optimal control problems by transforming an optimal
control problem into a root-finding problem. Derived methods have proven their
efficiency and their precision compared to direct methods [13, 14], but their conver-
gence strongly depends on their initialization and a prior knowledge of the solution
structure is needed.

Our goal is to address an aerospace challenge highlighted by [3], which is to
enclose the trajectory of a reusable launch vehicle subject to external perturbations.
The trajectory during the landing burn is computed online so the control is not
known beforehand. Computing an enclosure could guarantee that the vehicle lands
safely on the landing platform.

To that end, the return version of Goddard’s problem [5] is considered. It con-
sists in performing the landing of the first stage of a rocket while minimizing its fuel
consumption. The optimal trajectory of this system for nominal values of the pa-
rameters and the associated control are presented on Figure 1. Uncertainties on the
parameters will be added into the model in the form of intervals and deterministic
enclosures will be computed by combining interval arithmetic and the necessary op-
timality conditions given by the application of PMP. Although this method cannot
be applied to Goddard’s problem yet, this paper exposes our reasoning on simplified
problems.

Firstly, Section 2 introduces the problem considered. Section 3 presents the
interval and optimal control methods that will be later used. Section 4 proposes
three enclosures that can be utilized to discuss the reliability of an optimal control
problem with uncertainties. Section 5 showcases these enclosures on a simplified
problem. Lastly, Section 6 proposes some uses of these enclosures and the remaining
work to apply these methods on Goddard’s problem.

Notations

Interval variables and interval vectors are always enclosed in brackets: [x].
Any variable that is not enclosed in bracket is a real or vector variable.
Interval valued functions are enclosed in brackets: [f] : [x] → [f]([x]).
The bounds of an interval [a] are noted a, a. Its middle point is noted mid ([a]).
(.) such as in y(.) denotes a time function: y(.) : t ∈ [0, T] → y(t) ∈ R

n.
y(τ) and yτ are different, the later being a vector unrelated to function y(.).

A hat as in ξ̂ denotes a variable that is related to an estimation.

104 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

2 Control problem with uncertainties

In this section, the optimal control problem and the incorporation of uncertain
parameters are presented. Then three enclosures meant to discuss the relevance of
an optimal control problem will be introduced.

2.1 Optimal Control Problem (OCP)

The following non-interval optimal control problem is considered

min
u(.)∈U

∫ T

0

�(y(t), u(t))dt+Ψ(y(T)) s.t.

⎧⎪⎨⎪⎩
ẏ(t) = f(y(t), u(t), ξ(t), t),

y(0) = y0

T is fixed.

(1)

Interpretation : the system, a launcher for instance, is characterized by the
following data:

• A state y(t) e.g. position, velocity and mass of the launcher. The time
function y(.) is called a trajectory.

• An initial state y0.

• Dynamics ẏ(t) = f(y(t), u(t), ξ(t), t) e.g. the time derivative of position is
velocity, the derivative of velocity is the forces divided by mass etc. . . .

• A control input u(.) e.g. the reactor thrust vector.

• Parameters ξ(.) e.g. aerodynamic coefficients, maximum thrust. . . .

• A continuous cost �(y(t), u(t)) e.g. fuel consumption.

• A final cost Ψ(y(T)) e.g. the distance between the final state and the target.

System (1) is considered controllable. Hence for any initial state y0 and specific
parameter function ξ(.), an optimal control u(.) can be found. As a consequence, a
control can be defined implicitly as the solution of an OCP, as opposed to explicit
methods such as time series or gain tables. For instance, the Model Predictive
Control (MPC) approach defines the control as the solution of an optimal control
problem; the controller solves this optimal control problem at each time step to
determine the control to be applied. Some parts of a launch vehicle trajectory are
also defined by an OCP: [3] states that the control during the landing burn is the
optimal solution of a problem that is solved autonomously during the flight.

Bounded uncertainties on the initial state and the parameters will be added
into this model. The initial state y0 and parameter function ξ(.) take their values
in interval enclosures: y0 ∈ [y0] and ξ(t) ∈ [ξ], ∀t, where [ξ] and [y0] are intervals of
the form

[
ξ, ξ

]
or boxes (see definition in Section 3.2.1).

Since they are challenging to simulate with validated simulation, optimal con-
trol problems with varying time horizons and state dependant transitions are not

Bounded Uncertainties in Optimal Control Problems 105

considered in this paper. However, it is worth noting that time dependent tran-
sitions, or switches, are possible (see Section 3.2.3). This assumption excludes
Goddard’s problem. The bang-bang transition from a zero control to a saturated
control seen in Figure 1 is a state dependent transition and cannot be simulated
with our method, unless a precise switch time is forced. Section 6.2 discusses the
steps to be taken to apply this method to Goddard’s problem.

Note also that the presented method requires additional regularity conditions
which will be presented in Section 4.

2.2 Representation of the uncertainties in the OCP

Parameters are bounded functions of time: ∀t ∈ [0, T], ξ(t) ∈ [ξ]. It is also assumed
that each function ξ(.) is infinitely differentiable. This ensures that dynamics have
all the needed mathematical properties to be simulated.

The time dependency establishes a general framework without invalidating the
important assumptions of the optimality criterion used (see Section 3.1.2). It covers
indeed more scenarios than the approach considering that the parameters are un-
known constant values, which is an implicit assumption in [5] in which parameters
are picked randomly at the start and stay constant during the simulations.

The most encompassing framework would consider that parameters are also
functions of the state as a whole. However that would arise the need for more
assumptions (bounded spatial derivatives. . .).

2.3 Contributions

The motivation is to assess whether a given OCP outputs an adequate trajectory
for any realization of the initial state and parameter functions. A trajectory is
characterized by two realizations of the parameter function: the actual parameter
function ξ(.) and the parameter function estimated by the system ξ̂(.). Both are
taken amidst the same bound [ξ] but they may differ as the actual parameters are
often unknown in practice.

Hence, the following three enclosures of the solution of (1) are proposed:

• An anticipative enclosure containing trajectories whose control is computed
with the perfect knowledge of the parameter function: ξ̂(.) = ξ(.).

• An open loop2 enclosure containing trajectories whose control is computed
once at the start with an inaccurate parameter function ξ̂(.) �= ξ(.) and then
followed blindly.

• A closed loop3 enclosure containing trajectories whose control is computed
several times online with accurate measurements of the state but an inaccu-
rate parameter function ξ̂(.) �= ξ(.).

2also known as feed forward
3also known as feedback

106 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

Measures of the state are considered accurate, contrarily to parameters that
are unknown. The reason is that knowing parameter in advance is fundamentally
impossible because it requires seeing into the future, while having accurate mea-
surement is only a matter of hardware. Bounded errors on measurements will be
considered in future works.

These three enclosure can be used to validate all solutions of an OCP and assess
risks. Contrarily to the approach in [11], which optimizes a single control that
works for all realizations of the bounded uncertainties, the proposed method does
not output a control directly. Instead, it can guarantee that a given optimal control
problem will produce a satisfactory control for all realizations of the uncertainties
on the initial state and parameter function.

To take the example of launch vehicles [3], an OCP is solved right before the
landing burn to compute a guidance trajectory. This OCP is designed to provide a
trajectory to the landing platform with any possible dynamics and from any possible
state the launcher may be in right before the landing burn. The proposed approach
is to use a conservative enclosure of all possible dynamics and of all possible states
before the landing burn to derive enclosures of all trajectories that are solutions
of a given OCP with these initials states and dynamics. If every element in the
enclosures satisfy the final constraint of finishing on the landing platform, then the
OCP is guaranteed to output a satisfactory trajectory in practice and it may be
used on an actual launcher.

This is only a necessary condition. Since the enclosures are conservative, the
fact that the enclosure does not satisfy the constraints does not prove the existence
of a realization of the uncertainties that will cause the launcher to violate the
constraints. Nevertheless, on such critical systems, the possibility of failure is not
tolerated and may justify changing the OCP.

3 Mathematical preliminaries

In this section, a numerical method for optimal control is presented as well as
interval-based validation methods. Those methods will be combined in Section 4.

3.1 Numerical resolution of a control problem

As a first step, properties of dynamical systems will be recalled and the flow and re-
solvent notations will be introduced. Then these notations will be used to formalize
the indirect method known as Pontryagin’s Minimum Principle.

3.1.1 Flow and resolvent of an ordinary differential equation (ODE)

Consider an ODE in the form:{
ẋ(t) = g(x, ξ(t), t)
x(t0) = x0

Bounded Uncertainties in Optimal Control Problems 107

To simplify notations and since parameters only depend on time, g(x, ξ(t), t) is
denoted by g(x, t) whenever doing so does not impede comprehension.

A solution can be approximated by numerical methods, such as Euler’s method,
or more efficient Runge-Kutta methods [6]. Integrating the dynamics between two
boundary times τ and T can be seen as a flow function Φτ,T . The function Φτ,T

takes an initial state, simulates it from τ to T and returns the final state. If g
is twice differentiable, the flow Φτ,T has a spatial derivative in xτ which is the
resolvent Rτ,T (xτ) of the linearized system [8].

To illustrate these notations, consider two boundary times τ and T . Let x(.) be
the solution of the ODE: {

ẋ(t) = g(x, t)
x(τ) = xτ

Φτ,T (xτ) is the state of the solution at time T , Φτ,T (xτ) = x(T).

If z(.) is the solution of the same ODE with an initial perturbation δx:{
ż(t) = g(z, t)
z(τ) = xτ + δx

then its final state will be z(T) = x(T) +Rτ,T (xτ) · δx+ o(||δx||). The resolvent of
the linearized system enables a first order approximation of the final error caused
by an initial perturbation, and as such, it is the spatial first derivative of the flow.

The resolvent can sometimes be computed analytically, notably for linear time
invariant systems: if ẋ = A · x then Rτ,T (xτ) = exp((T − τ)A). If no analytic
formula is available, Rτ,T (xτ) can be computed by integrating the following ODE:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = g(x)

Ṙτ,t(xτ) =
∂g

∂x
(x(t)) ·Rτ,t(xτ)

x(τ) = xτ

Rτ,τ (xτ) = In.

(2)

In the following sections, the spatial arguments will often be removed to simplify
notations. Hence Rτ,T means Rτ,T (xτ).

3.1.2 Optimal control

An OCP is considered as in Section 2

min
u(.)∈U

∫ T

τ

�(y(t), u(t))dt+Ψ(y(T)) s.t.

⎧⎨⎩
ẏ(t) = f(y(t), u(t), ξ(t)), ∀t ∈ [τ, T],
y(τ) = yτ
T is fixed.

This control can be computed by multiple methods that mainly fall in two
categories:

108 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

• direct methods : the control is discretized, thus turning the infinite dimensional
problem into a high dimensional Euclidean optimization problem.

• indirect methods : using a characterization of the optimal trajectory and con-
trol, the infinite dimensional optimization problem is transformed into a sim-
pler problem.

The second approach is considered in this article.
To characterize the optimal solution, a new variable is added, the co-state p(.)

which is analog to the dual multiplier in constrained Euclidean optimization. p(.)
is a vector valued time function on the time range [0, T] and the vectors p(t) are
the same dimension as the vectors y(t).

The main result is the following theorem. This is a simplified version that is
sufficient for the problem tackled. It does not explicit the domain of each function
and does not address abnormal cases. A complete theorem can be found in [4, 13].

Pontryagin’s Minimum Principle4 (PMP): If (y(.), u(.)) are a normal opti-
mum, then there exists a non trivial co-state p(.) such that (y(.), p(.), u(.)) satisfy
the following equations:

H(y, p, u, t) = �(y, u) + p.f(y, u, ξ(t))⎧⎪⎪⎨⎪⎪⎩
ṗ(t) = −∂H

∂y
(y(t), p(t), u(t), t)

p(T) =
∂Ψ

∂y
(yT)

u(t) ∈ argminu H(y(t), p(t), u, t)∀t ∈ [τ, T],

whereH is called the pre-Hamiltonian. The optimal control u(.) is defined implicitly
as minimizing the pre-Hamiltonian at every time.

In many control problems this implicit definition yields an explicit expression.
That is, there is a function μ : y, p, t→ μ(y, p, t) such that:

u(t) ∈ argmin
u

H(y, p, u, t) ⇐⇒ u(t) = μ(y, p, t). (3)

For instance, [4] shows that in Goddard’s problem, the minimization condition
implies that the control (i.e. the thrust vector) has the same orientation as a part
of the co-state and that the magnitude of the control tends to be either saturated
or zero based on a switching function that depends solely on the state and co-
state (which leads to a bang-off-bang control as seen on Figure 1). Thus, the
control in Goddard’s problem is determined by the state and the co-state. In
the double integrator problem defined in Section 5, the control minimizes the pre-
Hamiltonian H(y, p, u) = ||u||2/2 + pv · u, which yields the explicit expression
u(t) = μ(y, p, t) = −pv.

4Also known as Pontryagin’s Maximum Principle. There are multiple formalization of this
principle in the literature.

Bounded Uncertainties in Optimal Control Problems 109

Noting gy(y, p, t) = f(y, μ(y, p, t), t) and gp(y, p, t) = −∂H/∂y(y, μ(y, p, t), p, t).
The equations of the PMP can be combined with those of Problem (1) to form the
following two point boundary value problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẏ(t) = gy(y(t), p(t), t)

ṗ(t) = gp(y(t), p(t), t)

y(τ) = yτ , p(τ) is free

y(T) is free, p(T) =
∂Ψ

∂y
(yT)

(4)

This is a problem of finding the value of p(τ) and y(T) such that integrating from the
state at time τ leads to the state at time T and vice versa. In many applications, it
is enough to solve the Initial Value Problem (IVP), that is finding p(τ). By splitting
the flow of Section 3.1.1, note φy

τ,T (yτ , pτ) the flow function that returns the final

state y(T) and φp
τ,T (yτ , pτ) the flow function that returns the final co-state p(T).

For a given yτ , the IVP can be written as follow:

find pτ such that C(yτ , pτ) = φp
τ,T (yτ , pτ)−

∂Ψ

∂y

(
φy
τ,T (yτ , pτ)

)
= 0. (5)

The IVP (5) is solved with a shooting method. First a guess of the initial co-
state is taken. Then the system is shot, i.e. the ODE is integrated until the final
time. Then the initial guess is corrected depending on how far the system landed
from the target. This is repeated until a satisfactory co-state is found.

A shooting method can be complemented with a continuation method5 when
the problem is hard to initialize. See [4, 5] for the application of this method to a
launcher system.

It is worth noting that the more general PMP states that if the dynamics do not
depend on time, then the pre-Hamiltonian is stationary. This is not the case under
our assumption since the dynamics depend on parameters that depend on time.
It follows that the method used in [4, 5] to compute singular arc of the control,
which is based on the stationarity of the pre-Hamiltonian, cannot be used under
our assumption. Hence we currently have no method to enclose singular arcs, apart
from a very crude over-approximation.

3.1.3 First derivative of the IVP

One way to solve the OCP is to apply a zero finding method to Equation (5). It
can be useful to compute the derivatives of φy

τ,T (yτ , pτ) and φp
τ,T (yτ , pτ).

Let the variable x(.) = (y(.), p(.)). This variable is subject to an ODE ẋ = g(x, t)
as seen in System (4). It follows that if g is twice differentiable, a resolvent Rx

τ,T

5also known as homotopic method

110 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

can be computed for this system using Equation (2). The resolvent Rx
τ,T is split in

four square Matrices:

Rx
τ,T =

(∗ Ry
τ,T

∗ Rp
τ,T

)
.

The two square matrices marked by ∗ are related to the final deviation caused by a
variation of the initial state and are not useful here. Ry

τ,T (resp. Rp
τ,T) is the final

state (resp. co-state) deviation caused by a variation of the initial co-state and is
the spatial derivative of φy

τ,T (yτ , pτ) (resp. φ
p
τ,T (yτ , pτ)).

By splitting the boundary condition Rx
τ,τ = Id and taking the upper right and

bottom right corner, boundary condition Ry
τ,τ = 0 and Rp

τ,τ = Id are obtained. Sim-

ilarly, splitting the dynamic Ṙτ,t(xτ) = ∂f/∂x(x(t)) ·Rτ,t(xτ) yields the dynamics
of Ry

τ,T and Rp
τ,T . Hence ODE (6) is deduced.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ(t) = gy(y(t), p(t), t)

ṗ(t) = gp(y(t), p(t), t)

Ṙy
τ,t =

∂gy

∂y
(y, p, t) ·Ry

τ,T +
∂gy

∂p
(y, p, t) ·Rp

τ,T

Ṙp
τ,t =

∂gp

∂y
(y, p, t) ·Ry

τ,T +
∂gp

∂p
(y, p, t) ·Rp

τ,T

y(τ) = yτ

p(τ) = pτ

Ry
τ,τ = 0

Rp
τ,τ = Id,

(6)

By simulating ODE (6), the value C(yτ , pτ) and first derivative ∂C/∂p(yτ , pτ)
of the IVP are obtained.

3.2 Validation methods

First, the general idea of interval arithmetic is recalled. Then two methods based
on this arithmetic are presented: Krawczyk method that encloses the solution of
a vector-valued equation and validated simulation that encloses the evolution of a
dynamical system.

3.2.1 Set representation using interval arithmetic

An interval [a] is a convex subset of R that contains all reals between a lower bound
a and an upper bound a. With a, a ∈ R ∪ {−∞,+∞}. Interval arithmetic can be
used as an alternative to floating-point arithmetic to obtain an enclosure of the
solution of a problem, rather than an approximation [10].

Bounded Uncertainties in Optimal Control Problems 111

For each real valued function f : a → f(a), one can create an inclusion function
[f] : [a] → [f]([a]) following a set-membership principle: the result of the interval
function [f] is an interval that contains each possible value of f on [a]

[f] ([a]) ⊃ {f(a)|∀a ∈ [a]} .
This definition has an inclusion rather than an equality because the set on the

left might not be an interval. Moreover, finding the minimal enclosure of the actual
set is difficult. The tightness of the results depends on the effort put into their
computations. For this reason, there may be multiple inclusion functions for a
single real valued function.

Interval vectors, or boxes, are an axis-aligned rectangular set in a finite dimen-
sional space. They are an inexpensive representation of a high dimensional set
(compared to polytops) but may induce a wrapping effect during computations [9].

Figure 2: Outer tiling of a set. The ellipsoidal set is enclosed by the union of red
boxes.

In lower dimension, an accurate enclosure of a set can be achieved with a paving
of boxes, a set of mutually disjoint boxes which together cover the whole set. A
simple paving is illustrated on Figure 2. A paving in which boxes are all the same
shape and aligned can be called a tiling. Such a representation is potentially very
precise, but the computational cost grows very fast in high dimension. Indeed, to
double the precision, the number of tiles has to be doubled in each direction, which
means 2n as many tiles, where n is the dimension of the vector space. Hence the
complexity of this representation is exponential in the dimension of the state, which
makes it ill-suited for many practical cases.

3.2.2 Krawczyk contractor

Krawczyk’s method is an interval based quasi-Newton algorithm. The formula-
tion used is inspired by [9]. This method encloses the solutions of an equation
C(a) = 0. It uses a contractor [K], an operator which takes an input box and
outputs a smaller box when possible. This contractor is built using [∂C/∂a] ([a]),
an enclosure of the first derivative of C on [a] in the form of an interval matrix.

112 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

Let mid ([a]) the middle point of [a], [K] is defined as follows:

[K]([a]) = mid ([a])−M ·C(mid ([a]))+

(
Id −M ·

[
∂C

∂a

]
([a])

)
·([a]−mid ([a])), (7)

where M is an invertible real matrix, typically M = mid ([∂C/∂a] ([a]))
−1

.

If a ∈ [a] is such that C(a) = 0, then a ∈ [K]([a]). If [K]([a]) is contained in
the interior of [a] then there is a unique solution in [a] or none.

To sum up, Krawczyk contractor is the function: [a] → [a]∩[K]([a]), Krawczyk’s
method is made of the following steps: i) Initialize [a] with the search area. ii)
Repeat [a] ← [a] ∩ [K]([a]) until convergence. Its output is a box containing all
solution of F (a) = 0 in [a].

3.2.3 Validated simulation

A set membership ODE is considered:{
ẋ(t) ∈ [f](x, t)
x(t0) ∈ [x0].

Validated simulation encloses every solution of this system in a sequence of
boxes (it encloses the solution for any realization of the initial state x0 ∈ [x0] with
any realization of the dynamics f(x) ∈ [f(x)]).

To that end, the time range [0, T] is discretized in (ti)i∈0..N , t0 = 0, tN = T .
Starting with an enclosure [yi] of the systems at time ti, an enclosure of the system
on the whole time range [ti, ti+1] (called a Picard box) is built. Then an enclosure
of y(ti+1) is computed. In [1], interval Runge-Kutta method are used coupled with
inflating terms that enclose the truncation error of the method. Indeed, if the
dynamics are sufficiently differentiable, the truncation error can be bounded by
evaluating the Lagrange remainder of the difference between the Taylor series of
the actual solution and the Taylor series of the Runge-Kutta approximation. For
instance, if dynamics are four time differentiable, the truncation error of Runge-
Kutta 4 may be enclosed.

The output of validated simulation resembles Figure 10, with the plain boxes
being state boxes and the dashed boxes being Picard boxes.

Validated simulation is akin to simulating multiple systems between two com-
mon time stamps. A time switch is a time horizon shared by all systems, hence all
systems can be simulated by doing a first simulation up until the switch and another
simulation starting right after the switch. Contrarily, a variable time horizons or a
state dependent transitions differs from one system to another. As a consequence,
there is no shared time stamp to use as a duration for the simulation, which makes
validated simulation challenging.

Bounded Uncertainties in Optimal Control Problems 113

4 Computation of three informative enclosures

In this section, the main contribution is presented. An interval valued OCP solver
is proposed and is used to build enclosures of the trajectory of a concrete system
using the OCP as a controller.

4.1 Interval OCP solver based on the PMP

As per our assumption, there are multiple possible initial states and multiple possi-
ble dynamics which means infinitely many possible solutions. Hence the following
set membership method to solve the OCP is proposed.

Assumption The presented method requires the dynamics g of the IVP (4) to
be at least twice differentiable and to be k + 1 times differentiable if a validated
simulation method of order k is used. Indeed, Section 3.1.3 states that if g is twice
differentiable, then a first derivative of the IVP (5) may be computed with ODE (6).
As ODE (6) involves ∂g/∂x, if g is k + 1 times differentiable, then ODE (6) is k
times differentiable and a method of order k may be used. This assumptions hold
if f , μ and � are infinitely differentiable, as will be the case in Section 5.

Method Based on the statements of Section 3.1.2, at a given time τ any couple
(yτ , pτ) that satisfies the optimality condition C(yτ , pτ) = 0 is considered optimal.
They will be referred as optimal (state, co-state) couples.

For a given enclosure of the state [yτ], a Krawczyk operator of the function
pτ → C(yτ , pτ) is built using Formula (7):

K([pτ]) = mid ([pτ]) +M · [C]([yτ],mid ([pτ]))

+

(
Id −M ·

[
∂C

∂p

]
([yτ], [pτ])

)
· ([pτ]−mid ([pτ])),

(8)

where:

• M = mid

([
∂C

∂p

]
([yτ], [pτ])

)−1

,

• [C]([yτ], [pτ]m) = [φ]pτ,T ([yτ], [pτ]m)−
[
∂Ψ

∂y

](
[φ]yτ,T ([yτ], [pτ]m)

)
,

•
[
∂C

∂p

]
([yτ], [pτ]) =

[
Rp

τ,T

]
([yτ], [pτ])−

[
∂2Ψ

∂2y

]
([yτ], [pτ]) ·

[
Ry

τ,T

]
([yτ], [pτ]).

114 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

The enclosure
[
Ry

τ,T

]
([yτ], [pτ]) and

[
Rp

τ,T

]
([yτ], [pτ]) of the resolvents can be

computed with an analytic formula if it exists, or by integrating ODE (9), which is
an enclosure of ODE (6).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ(t) ∈ [gy](y(t), p(t), [ξ])

ṗ(t) ∈ [gp](y(t), p(t), [ξ])

Ṙy
τ,t ∈

[
∂gy

∂y

]
(y, p, [ξ]) ·Ry

τ,T +

[
∂gy

∂p

]
(y, p, [ξ]) ·Rp

τ,T

Ṙp
τ,t ∈

[
∂gp

∂y

]
(y, p, [ξ]) ·Ry

τ,T +

[
∂gp

∂p

]
(y, p, [ξ]) ·Rp

τ,T

y(τ) ∈ [yτ]

p(τ) ∈ [pτ]

Ry
τ,τ = 0

Rp
τ,τ = Id,

(9)

The enclosure [φ]t0,t1([y0],mid ([p0])) of the flow can be computed by integrating:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẏ(t) ∈ [gy](y(t), p(t), [ξ])

ṗ(t) ∈ [gp](y(t), p(t), [ξ])

y(τ) ∈ [yτ]

p(τ) = mid ([pτ]) .

(10)

Algorithm 1 Computes [K]([pτ]) for given [yτ] and [pτ]

Require: [yτ] and [pτ]

Compute
[
Ry

τ,T

]
[yτ], [pτ] and

[
Rp

τ,T

]
([yτ], [pτ])

Compute [φ]τ,T ([yτ],mid (pτ))
Compute [K]([pτ]) using Formula (8)

Our OCP solver is an implementation of Krawczyk’s method. Algorithm 1
computes the Krawczyk operator, either with analytic formulae or by integrating
System (9) and System (10). Algorithm 2 is a Krawczyk’s method that outputs
∅ if there is no solution to C((yτ , pτ) = 0. The convergence criterion is Hausdorff
distance, which is a distance between sets particularly adapted to boxes [9].

Algorithm 2 needs to be initialized with a box ([pτ])0. This initial box de-
pends on the type of enclosure built. As explained in Section 4.3, the anticipative,
open-loop and closed-loop enclosures are computed using Algorithm 2 with differ-
ent initialization.

Bounded Uncertainties in Optimal Control Problems 115

Algorithm 2 Computes a thin enclosure ([pτ])k of the optimal co-states corre-
sponding to a given state enclosure [yτ]

Require: An initial searching area ([pτ])0 and [yτ]
([pτ])k ← ([pτ])0
Compute [K](([pτ])k) using algorithm 1
while DHausdorff(([pτ])k, ([pτ])k ∩ [K](([pτ])k)) > precision do
if 0 /∈ C(([yτ], [pτ])) then

Return ∅
else
([pτ])k ← [K](([pτ])k) ∩ ([pτ])k
Compute [K]([p]) using algorithm 1

end if
end while

4.2 Three enclosures to analyze the problem

For each realization of the initial condition parameters, there are an optimal control
and a trajectory that are solution of the OCP. As a consequence, an OCP with
interval uncertainties defines infinitely many controls and trajectories.

Similarly to many algorithms in the interval arithmetic literature that search a
thin box containing all possible solutions of a problem, the anticipative enclosure
contains all trajectories that are solution of an OCP.

Anticipative enclosure: For any parameter function ξ(.) : [0, T]→ [ξ] and any
initial state y0 ∈ [y0], the anticipative enclosure contains the trajectory:{

ẏ(t) = f(y(t), u(t), ξ(t))

y(0) = y0,

with u(.) the solution of the OCP:

min
u(.)∈U

∫ T

0

�(y(t), u(t))dt+Ψ(y(T)) s.t.

{
ẏ(t) = f(y(t), u(t), ξ(t))

y(0) = y0.

ξ(.) corresponds to both the actual realization of the parameters and the esti-
mation made by the system. It is an ideal case in which the actual parameters are
known with perfect accuracy. As such, this enclosure gives little information on the
trajectory of a concrete system. In practice, parameter uncertainties will cause the
system to deviate from its optimal trajectory and exit this enclosure.

The following two enclosures are proposed so as to inform on the behavior of the
system in practical cases. They are meant to enclose the trajectory of a concrete
system that computes its control by solving the OCP with an inaccurate model.

116 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

Open loop enclosure : It encloses a system which follows blindly an initial
solution that was computed with inaccurate parameters. For any couple of param-
eters functions ξ(.), ξ̂(.) : [0, T]→ [ξ], and any initial state y0 ∈ [y0], the open loop
enclosure contains the trajectory:{

ẏ(t) = f(y(t), û(t), ξ(t))

y(0) = y0,

with û(.) the solution of the OCP:

min
û(.)∈U

∫ T

0

�(ŷ(t), û(t))dt+Ψ(ŷ(T)) s.t.

{
˙̂y(t) = f(ŷ(t), û(t), ξ̂(.)(t))

ŷ(0) = y0.

ξ(.) corresponds to the actual realization of the parameters, which is unknown.

Hence the system has an inaccurate estimation ξ̂(.). This is close to worst case
analysis, as the worst case being the application of a control tailored for an extreme
scenario to the opposite extreme scenario. This enclosure emphasizes the worst
under or over-shooting possible.

It is possible to make a less pessimistic enclosure by taking into account the
fact that the system can correct its trajectory using sensor data.

Closed loop enclosure : It encloses a system that uses a perfect measure of its
state to recompute the solution of the OCP online (but with inaccurate parameters).
Consider a list of recomputation time (τk)k∈0..K , 0 = τ0 < τ1.. < τK = T . For

any couple of parameters functions ξ(.), ξ̂(.) : [0, T] → [ξ], and any initial states
y0 ∈ [y0], the closed loop enclosure contains the trajectory of the piecewise-defined
system: {

ẏ(t) = f(y(t), ûk(t), ξ(t)), t), ∀t ∈ [τk, τk+1]

y(0) = y0,

with ûk(.) the solution of the OCP:

minû(.)∈U
∫ T

τk
�(ŷ(t), û(t))dt+Ψ(ŷ(T)) such that

{
˙̂y(t) = f(ŷ(t), û(t), ξ̂(t))

ŷ(τk) = y(τk).

The overall control is made of pieces ûk(.) that are computed with an accurate
measurement of the state y(τk). As in the open-loop enclosure, ξ(.) corresponds to

the actual realization of the parameters, which is unknown, and ξ̂(.) is an inaccurate
estimation. This encloses the actual operation of a system with an optimal control
regulator. The system does not have access to the value of the parameters, but it
compensates using measures of its state.

In this paper, a finite set of recomputation time (τk)k∈0..K is considered. Under
this assumption the closed loop enclosure is a sequence of open loop enclosures.
Future works will investigate scenarios in which the control is recomputed at every
time, which causes the closed loop to have a more unique geometry.

The computation of these enclosures is presented in Section 4.3.

Bounded Uncertainties in Optimal Control Problems 117

4.3 The underlying geometry of these enclosures

A simpler system is considered to emphasize the geometry of the enclosures pre-
sented in Section 4.2. The following figures are depiction of the OCP:

min
u(.)∈U

∫ T

τ

u2

2
dt+K

(y(T)− yT)
2

2
s.t.

⎧⎨⎩
ẏ(t) = ξ(t)u,
y(τ) = yτ ,
T is fixed.

with ∀t, ξ(t) ∈ [ξ], an uncertain parameter. As the state is one dimensional, state
and co-state can be drawn on a single graph to showcase the important sets.

Open loop enclosure. As seen in Section 3.1.2, in the real case, the optimal
control and trajectory are found by first solving the IVP (5) then integrating Sys-
tem (4).

To build the open-loop enclosure, an enclosure of the solution of the IVP is
computed, then the evolution of System (4) is enclosed. If the initial state is such
that yτ ∈ [yτ], then the (state, co-state) couples can be anywhere in [yτ]×R

n, the
orange vertical strip on Figure 3. The (state, co-state) couples that are solution
of the IVP (5) are enclosed in the blue cone. The solutions of the OCP lie in the
intersection (in red) of these two sets. If Algorithm 2 is initialized with a box ([pτ])0
that is large enough to contain this intersection, then it computes a box enclosure
of this intersection.

Once [pτ] has been computed, the evolution of System (4) is enclosed using
validated simulation during a time range dt. This integration of System (4) is
shown on Figure 4. This yields a set of possible state, co-state) couples at time
τ + dt, which in turn gives an enclosure of the possible states [yτ+dt]. By going on
until the final time T , the open-loop enclosure is computed.

yτ yτ yT
state space

co
-s
ta
te

sp
ac
e

Figure 3: Geometric resolution of the
OCP at time τ .

yτ yτ yτ+dt yτ+dt yT
state space

co
-s
ta
te

sp
ac
e

Figure 4: Simulation of the System (4)
from time τ to time τ + dt.

118 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

Closed loop enclosure. If the system recomputes its control at τ + dt using
accurate measurements from the sensors, the OCP is solved again with an initial
state in [yτ+dt]. This is illustrated in Figure 5, which is similar to Figure 4. An
important point is that the red set of recomputed (state, co-state) couples is not
contained in the purple set obtained by integrating System (4) from a prior step.
This is due to the fact that the prior co-states were computed with the wrong pa-
rameters. Replacing them is a correction. Hence, these trajectories do not respect
the equations of the PMP: applying a control that is optimal for a faulty model
results in a non optimal trajectory.

yτ+dt yτ+dt yT
state space

co
-s
ta
te

sp
ac
e

Figure 5: Closed-loop: recomputation of
the optimal co-states at time τ + dt.

yτ+dt yτ+dt yT
state space

co
-s
ta
te

sp
ac
e

Figure 6: Anticipative: refining of the
optimal couples at time τ + dt.

Anticipative enclosure. To characterize the actual optimal trajectories, the
following criterion is applied. If a trajectory is optimal from A to B and C is an
intermediate state of that trajectory, then the trajectory is optimal from A to C
and from C to B. If A is the state at time τ , B is the state at time T and C is the
state at time τ + dt, then its (state, co-state) couple at time τ + dt satisfies two
properties.

• Optimality condition between A and C: the couple lies in the purple polyhe-
dron on Figure 6, which is the set obtained by integrating System (4) from
step τ .

• Optimality condition between C and B: the couple is in the blue cone on
Figure 6, which is the set of solutions of the IVP (4) with the initial time
τ + dt.

By taking the intersection of these two sets, the set of optimal (state, co-state)
couples is refined. This refinement can be done by initializing Algorithm 2 with
([pτ+dt])0 the projection of the purple polyhedron on co-state space.

Bounded Uncertainties in Optimal Control Problems 119

5 Experimentations

The computation of the three enclosures is showcased on a double integrator with
quadratic cost.

5.1 A naive implementation

Since Krawczyk’s Algorithm 2 operates with boxes, the state representation has
to be a box or a set of boxes. Representing the set of possible states by a box is
computationally efficient but causes crippling wrapping effects. Instead, we propose
a naive implementation that encloses the state at time t in a tiled bounding box,
such as in Figure 2.

To compute an enclosure of state at time t+dt, for each tile that might contain a
possible state, the OCP is solved (see Figure 7) and then the system is integrated.
A first round of OCP resolution and validated integration is done to compute a
bounding box of the state at time t+ dt, then this bounding box is tiled uniformly
and a second round finds which tiles might contain a solution.

yτ yτ yT
state space

co
-s
ta
te

sp
ac
e

Figure 7: Paving the state enclosure to get a thinner approximation.

Each tile requires several calls to Algorithms 1 and 2 , and since the complexity
of the tiling is exponential in the dimension, this naive method is not adapted to
complicated systems.

5.2 Numerical results on a double integrator

Consider a double integrator in a uniform gravity field and with a reactor thrust.
It is subject to a quadratic continuous cost and a quadratic penalization on the
final state.

min

∫ T

0

||u||2
2

dt+Kv
||v(T)||2

2

+Kr
||r(T)− rT ||2

2

such that

⎧⎪⎨⎪⎩
ṙ(t) = v

v̇(t) = −C
mu−Ge2

r(0) = r0, v(0) = v0,

(11)

120 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

where G is the normalized gravity field, e2 is the unit vector of the vertical axis, C
is the maximum thrust and m is the mass of the system, which is assumed to be
constant.

By using the method in Section 3.1.2, this OCP turns into the following two
point boundary value problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ṙ(t) = v

v̇(t) = −pv
(
C
m

)2 −Ge2

ṗr(t) = 0

ṗv(t) = −pr
r(0) = r0, v(0) = v0

pr(T)−Krr(T) = 0, pv(T)−Kvv(T) = 0.

(12)

The values used are inspired by the take-off problem in [4]. The parameter
nominal values are the same as in [4]. The initial position of the system corresponds
to the final position of the take-off mission. The initial velocity has been chosen to
be coherent with a re-entry mission.

The solution of the nominal case is presented on Figure 8.
The initial position has an uncertainty of around 5 km, which is about 2% of

the span of the trajectory. The initial speed has a relative uncertainty of 1.7% and
the parameter ratio C/m has a relative uncertainty of 0.2%. However, the mission
duration is greater than the optimal duration so as to emphasize the differences
between the enclosures. The longer the mission, the more the system has to fight
gravity, the more uncertainties are accumulated along the vertical axis.

Figures 9, 10 and 11 depict enclosures of the double integrator computed using
Algorithm 2 coupled with a tiling of the state enclosure (as shown on Figure 7).
The initialization of Algorithm 2 depends on the type of enclosure, as explained in
Section 4.3.

Since System (12) is linear time invariant with a strictly triangular matrix, there
are analytic formulae for the flow and the resolvents. We use these analytic formulae
in Algorithm 1. We have also simulated Systems (9) and (10) with DynIbex [1]: a
C++ library for validated simulation. The precision of the results of the simulations
matches those of the analytic formulae. However, these simulations drastically
increase computation time, which in turn significantly restrict the precision of the
tiling. As a consequence, Figures 9, 10 and 11 were done with analytic formulae
rather than validated simulation.

The anticipative enclosure on Figure 9 starts wide because of initial uncertainty
but gets thinner as all the system converge to the target. As a result, the final box
is very thin.

Contrarily, the open-loop enclosure on Figure 10 becomes wider over time and
the final box is very big. Systems over-shoot or under-shoot the target because of
their lack of correction.

Lastly, the closed loop enclosure on Figure 11 is somewhere in between the two
other enclosures. These systems deviate from their optimal trajectory but correct

Bounded Uncertainties in Optimal Control Problems 121

it, leading to a bulge on the middle and end of the trajectory that gets abruptly
smaller at the end.

r0rT
z coordinate

r0

rT

v0 vT
z velocity

v0

vT

x
ve
lo
ci
ty

0 T
time

0.0

0.5

co
nt
ro
l
(t
h
ru
st

ve
ct
or
)

||u(t)||
ux(t)

uz(t)

Figure 8: Optimal trajectory, velocity space trajectory and control for the a double
integrator with quadratic cost. Unlike Goddard’s problem on Figure 1, the control
changes continuously.

[r0] rT

[r0]

rT
[v0] vT

[v0]

vT

Figure 9: Anticipative enclosure of position and velocity.

122 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

[r0] rT

[r0]

rT

[v0] vT

[v0]

vT

Figure 10: Open loop enclosure of position and velocity.

[r0] rT

[r0]

rT
[v0] vT

[v0]

vT

Figure 11: Closed loop enclosure of position and velocity.

6 Discussion

In this section, we propose some uses of the enclosures, then list what needs to be
done to address more complex problems.

6.1 Risk assessment and indicating the relevance of an OCP

These enclosures are similar to those developed in [2]. As such, they can have the
same application. Consider the example of final constraints: the final state must
be in a safe zone. The final position must be in the recuperation platform and the
final velocity must be sufficiently small for the system to land. A similar reasoning
can be held for a state constraint, or other requirements of a mission.

If the final state box of the closed loop enclosure (Figure 11) is contained in the
safe zone, then a system using this OCP in closed loop is guaranteed to satisfy the
final constraint. Similarly, it can be guaranteed that applying the solution of the
OCP in open loop will satisfy the mission (although this is clearly not the case on
Figure 10). Both are strong assessment of robustness. The cost can be enclosed as

Bounded Uncertainties in Optimal Control Problems 123

well, which gives a worst performance index.

When using a floating-point control, the anticipative enclosure will provide an
upper bound to the distance to the actual optimal control. As a consequence, this
provide a criterion to discuss the validity of a floating-point control. To minimize
this criterion, the middle point of the control box of the anticipative enclosure can
be used as a control.

These enclosures could be used to design the model or the concrete system.
For instance, if the final enclosure of the velocity of the anticipative enclosure
(Figure 9) is not entirely contained in the safe zone, that means that there might
be a realization of the initial states and the parameters such that the system will
crash by following the optimal trajectory defined by the OCP.

The existence of such a realization is not guaranteed as those enclosures are
conservative, nevertheless, for critical systems, the mere possibility of the existence
of a failure may require the OCP to be changed.

In Problem (11), this could mean increasing the penalization coefficient Kr and
Kv, thus making the launch more costly but decreasing the uncertainty on the final
state and maybe void the possibility of failure.

Contrarily, if the open-loop or closed-loop enclosures final boxes respect the
final constraint by a significant margin, then the penalization could be decreased
to achieve better performances on other criteria. Alternatively, the uncertainty
could be altered. One could assess the maximum acceptable magnitude of the
uncertainties and use it as specification for the creation of an engine or sensors.
Lastly, if the open loop enclosure respects all the constraints, then it might not be
necessary to elaborate a closed loop regulator.

Of course, these statements hold true as long as the model with uncertainties is
accurate. If parameter uncertainties have been under-estimated or if the model has
neglected a phenomenon, then there is no guarantee that the system will remain in
the enclosures.

6.2 Generalizing to Goddard’s problem

The double integrator with quadratic cost was considered because it is used to
initialize a continuation method to solve Goddard’s problem [4, 5].

In a similar manner to a continuation method, there are two steps to bridge
the gap between the double integrator and Goddard’s problem. First non linear
systems have to be addressed. We need to simulate non linear problems and their
resolvent, which is costly. Then state dependent transitions and variable time
horizons will need to be modeled and enclosed. This means being able to enclose
the evolution of a hybrid system, if possible in a manner that does not induce a
significant over-approximation. This also makes the computation of the resolvent
more challenging.

In addition to that, Goddard’s representation of a spacecraft is in dimension
seven. As a consequence, tiling may no longer be used to improve the precision of
Algorithm 2. An entirely new method may be needed.

124 E. Bertin, E. Brendel, B. Hérissé, J. Alexandre dit Sandretto, A. Chapoutot

7 Conclusion

In this paper, a resolution tool was proposed for optimal control problems with
embedded uncertainties. This resolution tool is used to compute three enclosures,
an anticipative enclosure containing all possible solutions of the optimal control
problem, and open-loop and closed loop enclosures that bounds the trajectory of a
concrete system that uses this problem as a controller. These enclosures can show
the deviation caused by the uncertainties, identify the critical zone that could be
crossed or more generally assess the relevance of a given optimal control problem.

In later works, we will try to improve our method until it can reliably compute
these enclosures for a problem as complex as Goddard’s.

Acknowledgment

This work was partially supported by the “Chair Complex Systems Engineering –
Ecole polytechnique, Thales, DGA, FX, Dassault Aviation, Naval Group Research,
ENSTA Paris, Télécom Paris, and Fondation ParisTech”

References

[1] Alexandre dit Sandretto, J. and Chapoutot, A. Validated explicit and implicit
Runge–Kutta methods. Reliable Computing, 22(1):79–103, Jul 2016.

[2] Althoff, M. Reachability Analysis and its Application to the Safety Assessment
of Autonomous Cars. PhD thesis, Technische Universität München, 2010.

[3] Blackmore, L. Autonomous precision landing of space rockets. The Bridge,
4(46):15–20, 01 2016.

[4] Bonnans, F., Martinon, P., and Trélat, E. Singular arcs in the generalized god-
dard’s problem. Journal of Optimization Theory and Applications, 139(2):439–
461, 2008. DOI: 10.1007/s10957-008-9387-1.

[5] Brendel, E., Hérissé, B., and Bourgeois, E. Optimal guidance for Toss Back
concepts of Reusable Launch Vehicles. In EUCASS, 2019.

[6] Butcher, J. C. Coefficients for the study of runge-kutta integration processes.
Journal of the Australian Mathematical Society, 3(2):185–201, 1963. DOI:
10.1017/S1446788700027932.

[7] Caillau, J.-B., Cerf, M., Sassi, A., Trélat, E., and Zidani, H. Solving chance
constrained optimal control problems in aerospace via kernel density esti-
mation. Optimal Control, Applications and Methods, 39(5):1818–1832, 2018.
DOI: 10.1002/oca.2445.

[8] Coron, J.M. and American Mathematical Society. Control and Nonlinearity.
Mathematical surveys and monographs. American Mathematical Society, 2007.

Bounded Uncertainties in Optimal Control Problems 125

[9] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. Applied Interval Analy-
sis: With Examples in Parameter and State Estimation, Robust Control and
Robotics. Springer London, 2001. DOI: 10.1007/978-1-4471-0249-6.

[10] Moore, Ramon E. Interval analysis, volume 4. Prentice-Hall Englewood Cliffs,
1966.

[11] Rauh, A. and Hofer, E. P. Interval methods for optimal control. In Buttazzo,
G. and Frediani, A., editors, Variational Analysis and Aerospace Engineering,
chapter 22, pages 397–418. Springer New York, New York, NY, 2009. DOI:
10.1007/978-0-387-95857-6_22.

[12] Rauh, A., Minisini, J., and Hofer, E. P. Interval techniques for design of op-
timal and robust control strategies. In 12th GAMM - IMACS International
Symposium on Scientific Computing, Computer Arithmetic and Validated Nu-
merics (SCAN 2006), Duisburg,, 2006. DOI: 10.1109/SCAN.2006.27.

[13] Trélat, E. Contrôle optimal: théorie et applications. Vuibert, 2005.

[14] Trélat, E. Optimal control and applications to aerospace: Some results and
challenges. Journal of Optimization Theory and Applications, 154(3):713–758,
2012. DOI: 10.1007/s10957-012-0050-5.

Contents

Special Issue of the 12th Summer Workshop on Interval Methods
Julien Alexandre dit Sandretto, Alexandre Chapoutot, and Olivier Mullier:

Preface . 3
Jason Brown and François Pessaux: Interval-based Simulation of Zélus IVPs

using DynIbex . 5
Andreas Rauh and Julia Kersten: Toward the Development of Iteration Pro-

cedures for the Interval-Based Simulation of Fractional-Order Systems . . 21
Julien Alexandre dit Sandretto: Confidence-based Contractor, Propagation

and Potential Clouds for Differential Equations 49
Shuchen Liu, Jan-Jöran Gehrt, Dirk Abel, and René Zweigel: Identification

of Multi-Faults in GNSS Signals using RSIVIA under Dual Constellation 69
Olivier Mullier and Julien Alexandre dit Sandretto: Validated Trajectory

Tracking using Flatness . 85
Etienne Bertin, Elliot Brendel, Bruno Hérissé, Julien Alexandre dit San-

dretto, and Alexandre Chapoutot: Prospects on Solving an Optimal Con-
trol Problem with Bounded Uncertainties on Parameters using Interval
Arithmetic . 101

ISSN 0324—721 X (Print)
ISSN 2676—993 X (Online)

Editor-in-Chief: Tibor Csendes

