
Introduction

Throughout evolution, the dependence of human beings 
on nature has been everlasting. Natural products have 
among the important sources of medicine for millennia 
to alleviate and treat various diseases. However, despite 
the rise of combinatorial chemistry as an integral part 
of lead discovery process, natural products still play a 
major role in providing novel and interesting chemical 
scaffolds for drug discovery with an outstanding de-
velopment in the areas of separation science (Liu et al. 
2019). Although plants are considered as the biofactories 
of many valuable bioactive compounds, they possess the 
disadvantage of slow growth rate, while harvesting rare 
and endangered species also poses a risk ( Jia et al. 2016). 
Therefore, it is necessary to find alternative approaches 
to produce medicinal plant-derived bioactive metabolites. 
In recent decades, endophytes have been recognized as 
sources of several bioactive compounds and are studied 
as potential sources of novel natural products for medi-
cal and commercial exploitation (Selvakumar and Pan-
neerselvam 2018). 

The term “endophyte” originally introduced by de 
Bary (1866) to distinguish fungi – living inside host tis-
sues – from epiphytes, is derived from the Greek word 
“endon”, meaning inside or within and “phyton”, meaning 
plant. The meaning of the word has evolved to include any 
microorganism that inhabits plants during a period of its 
life cycle, especially within leaves, branches, and stems, 
without causing significant damage to its host (Wilson 
1995). Endophytes possess a complex relationship with 
their hosts. They are symbiotic in nature, which may be 
mutualism, commensalism or saprophytism (Clay and 
Schardl 2002; Strobel and Daisy 2003). Endophytes can 
increase the competitive abilities and fitness of plants by 
increasing their nutrient uptake, resistance to drought 
and water stress, tolerance to heavy metal stress and 
high salinity, or their growth rate through biochemical 
pathways by producing plant growth hormones. For 
example, researchers proved that most of the endophytic 
fungi produce indole-3-acetic acid ( Tan and Zou 2001; 
Turbat et al. 2020). It was also suggested that these endo-
phytes initiate the biological degradation of the dead or 
dying host tissues ( Tan and Zou 2001). Although almost 
all higher plants contain at least one endophytic micro-
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organism, the relationship between microbes and their 
plant hosts remains one of the least studied biochemical 
systems, because it is difficult to find the exact physical 
relationship in the interaction. Given this fact, this long-
held association might have created a specific genetic 
system in endophytes regarding their relationship with 
plants or vice versa (Strobel 2003).

Endophytic fungi are highly diverse, and more than 
1 million species of this fungal group is estimated to be 
undiscovered (Sun and Guo 2012). They represent an 
important component of fungal biodiversity and it has 
also been observed that almost every plant examined 
to date harbors at least one species of endophytic fungi, 
while many plants, particularly woody plants, contain 
hundreds of endophytic species (Petrini 1986; Sahoo et 
al. 2017). However, various factors affect the distribution 
of the endophytic fungal community, such as environ-
mental factors (temperature, humidity), and the type and 
age of the colonized host tissue (Sanchez-Azofeifa et al. 
2012). Most of the studies reported that Dothideomycetes 
and Sordariomycetes are the dominant classes found 
in medicinal plants, but the diversity of the endophytic 
fungi also differs according to the geographical regions 
(Kharwar et al. 2008; Dhayanithy et al. 2019).

Endophytic fungi of medicinal plants are potential 
sources of novel bioactive compounds and some have 
also been proved to produce plant-associated therapeutic 
metabolites (Huang et al. 2007; Vigneshwari et al. 2019). 
The endophytic fungi such as Acremonium, Alternaria, Asper-
gillus, Cephalosporium, Chaetomium, Chloridium, Choanephora, 
Colletotrichum, Fusarium, Gliocladium, Hypoxylon, Paecilomyces, 
Penicillium, Pestalotiopsis, Talaromyces, and Trichoderma from 
different medicinal plants have been reported as sources of 
several bioactive compounds (Rana et al. 2019). A diverse 
array of endophytic metabolites exhibited antimicrobial 
activity against various pathogenic microbiota, and these 
can be used in pharmaceuticals, medicine, and agriculture 
(Gunatilaka et al. 2006; Yo et al. 2017; Sim et al. 2020). 

The common juniper (Juniperus communis L.) is a bush 
or small evergreen tree which has been commonly referred 
to as herbal medicine in ancient times. It contains various 
chemical constituents including flavonoids, volatile oils, 
coumarins and therapeutically important anticancer 
lignans, podophyllotoxin and deoxypodophyllotoxin 
(Hartwell et al. 1953). Previous studies reported the 
isolation and characterization of endophytic fungi har-
boured in Juniperus plants sampled from the natural 
populations in Dortmund and Haltern (Germany), and 
Jammu and Kashmir (India). This resulted in the discov-
ery of a deoxypodophyllotoxin-producing endophytic 
fungus harboured in J. communis (Kusari et al. 2009). 
The endophytic fungi isolated from Juniperus trees such 
as Penicillium and Aspergillus were also found to exhibit 

antimicrobial activities (Gherbawy and Elhariry 2016).
In our study, isolation and identification of endophytic 

fungi from J. communis were undertaken and their biodi-
versity parameters evaluated. Furthermore, the antimi-
crobial activities of metabolites extracted with different 
organic solvents from both the ferment broth and mycelia 
of isolated endophytic fungi were also determined.

Materials and Methods

Collection of J. communis samples
Fresh, healthy parts of the J. communis plants were collected 
during the late autumn of 2015, 2016 and 2017 (Table 1.). 
GPS coordinates of the sampling sites were recorded. All 
plant specimens have been identified and authenticated 
by experts. Collected specimens were placed into sealed 
plastic bags, labelled with the number and date of collec-
tion and stored at 4 °C until processing.

Isolation of endophytes
Isolation of endophytic fungi from plant parts was per-
formed according to the method described by Garyali 
(2013) with minor modifications. The plant materials 
were rinsed in running tap water to remove dust and 
debris, and the specimens were cut into small segments 
of about 0.5 to 1 cm in length using a sterile blade. The 
leaf, twig, root, and cone parts were separated, and these 
parts were examined for their fungal endophyte content. 

The plant segments were surface sterilized to kill the 
epiphytic microorganisms by sequentially immersing 
the plant material in 70% ethanol for 60 sec, washing 
with sterile distilled water and then steeping in 0.01% 
mercuric chloride (VWR International, Hungary) for 
30 sec. Finally, the specimens were washed again with 
sterile distilled water 2-3 times and then allowed to dry 
on a sterile blotting paper. Each segment was placed onto 
the surface of PDA medium (VWR International, Hun-
gary) supplemented with ampicillin (50 µg/mL, Merck, 
Hungary) in Petri dishes. They were incubated at 25 °C 
for 5-10 days and checked daily for the growth of fungal 
colonies. Pure isolates were obtained by picking individual 
colonies from the plates and transferring them onto fresh 
PDA medium where they were incubated at 25 °C for 10 
days. Each fungal culture was checked again for purity, 
transferred separately to PDA slants, maintained at 4 °C 
and deposited in the Szeged Microbiological Collection 
(SZMC, Hungary; http://www.wfcc.info/ccinfo/collec-
tion/by_id/987).

Molecular identification of isolates
Genomic DNA was isolated from fungal mycelia grown 
in PDB medium (VWR International, Hungary) at 25 °C 

Vigneshwari et al.

130



for 7 days. Isolation and purification of genomic DNA 
was performed using the EZNA Fungal DNA Mini Kit 
(Omega Bio-tek, Norcross, USA) according to the manu-
facturer’s instructions. 

DNA fragments containing the ITS region of the 
ribosomal DNA gene cluster were amplified using the 
primers ITS1 and ITS4 (White et al. 1990). Polymerase 
chain reaction (PCR) was performed in a total volume 
of 25 µL consisting of 2.5 µL of PCR reaction buffer 
(10×Standard Reaction Buffer), 2 µL of 2mM dNTP, 
0.5 µL of 10 µM ITS1 forward primer (5’-TCCGTAG-
GTGAACCTGCGG-3’), 0.5 µL of 10 µM ITS4 reverse 
primer (5’-TCCTCCGCTTATTGATATGC-3’), 2 µL of 
DNA template and 0.125 µL of Pfu DNA-polymerase 
(Fermentas). The PCR amplification profile consisted of 
an initial denaturation at 94 °C for 5 min, followed by 35 
amplification cycles (30 sec at 94 °C, 40 sec at 48 °C, and 1 
min 72 °C) and a final extension at 72 °C for 3 min. PCR 
products were separated using horizontal gel electro-
phoresis in 1% agarose gel supplemented with ethidium 
bromide at 0.1 µg/mL final concentration. Electropho-
resis was performed for 30 min at 100 V. Separated DNA 
fragments were visualized using a UV transilluminator 
(UVP-BioDoc-ItTM imaging Systems, Analytik Jena, Jena, 
Germany). 1000 bp marker (Fermentas) was used to de-
termine the size of the products.

Amplified DNA fragments were sequenced (BaseClear, 
The Netherlands) and used for BLAST similarity search 
at the website of the National Center for Biotechnology 
Information (http://www.ncbi.nlm.nih.gov/BLAST). 
Genus level identification was carried out from the lowest 
expect value of the BLAST output.

Screening of bioactive metabolite-producing endophytic 
fungi

Secondary metabolite extraction

The isolated endophytic fungi were cultured for 7 days 
at 25 °C in 50 mL PDB medium. Then the mycelia were 
separated from the broth by filtration through a cheese 
cloth and dried overnight in an oven until constant weight. 
Then 25 mL distilled water was added to the dry material, 
which was then sonicated for 20 min after the addition of 
an aliquot of liquid nitrogen to maintain the chilled condi-
tion. After that the extraction of the aqueous samples was 
done with a 25 mL mixture of chloroform and methanol 
(4:1, V/V) and extraction was repeated 3 times. The ferment 
broths were extracted 3 times sequentially with 50-50 
mL of hexane, ethyl acetate and chloroform, respectively, 
and both extract series were pooled. The organic solvents 
were removed by a rotary evaporator (IKA HB10 basic, 
VWR International, Hungary) in vacuum at 30 °C from 
each pooled extract including ethyl acetate, chloroform, 

as well as chloroform and methanol (4:1, V/V) fractions. 
The resulted 4 dry samples per each isolate were stored at 
-20 °C and resuspended in 1 mL of HPLC grade methanol 
(VWR International, Hungary) prior to use.

Activity assays against bacteria and yeast

For testing the antibacterial potential of the crude ext-
racts, 400 μL of the methanolic extracts were transferred 
into new Eppendorf tubes and dissolved in 1 mL 10% 
methanol after evaporation. These extracts were tes-
ted against two Gram-negative (Escherichia coli SZMC 
6271 and Pseudomonas aeruoginosa SZMC 23290), two 
Gram-positive bacteria (Staphylococcus aureus SZMC 
14611 and Bacillus subtilis SZMC 0209) and two yeasts 
(Candida albicans SZMC 1533 and C. krusei SZMC 1352). 
For the assay, the suspensions of the microbes were pre-
pared from overnight cultures, which were cultivated in 
Luria-Bertani broth (10 g tryptone, 5 g yeast extract and 
5 g NaCl in 1 L distilled water) and yeast extract peptone 
dextrose broth (20 g peptone, 10 g yeast extract and 20 g 
glucose in 1 L distilled water) for the bacteria and yeasts, 
respectively, at 37 °C. Their concentrations were set to 
4 × 105 cells/mL with sterile media. Then, 96-well plates 
were prepared by dispensing 100 μL suspension conta-
ining the bacterial or yeast cells, 100 μL of the extract 
dissolved in 10% of methanol was added into the wells, 
which were then incubated for 24 h at 37 °C. The mixture 
of 100 μL broth and 100 μL 10% methanol was used as 
the blank sample for background correction, while 100 
μL of the microbial suspension supplemented with 100 
μL 10% methanol was applied as the negative control. 
The positive control contained ampicillin (100 μg/mL, 
Merck, Hungary) for bacteria and nystatin (10 μg/mL, 
Merck, Hungary) for fungi. The inhibitory effects of each 
derivative were spectrophotometrically (SPECTROstar 
Nano, BMG Labtech, Ordenberg, Germany) determined 
at 620 nm after incubation, and the inhibition rate was 
calculated as the percentage of the positive control after 
blank correction.

Activity assay against filamentous fungi

To determine the potential antifungal activity of the 
fungal extracts against filamentous fungi, agar well dif-
fusion assay was carried out. Evaporated samples of crude 
extracts (400 μL) were dissolved in 1 mL 10% methanol. 
Four holes with a diameter of 8 mm were bored into PDA 
plates, at the 2.5 cm distances around the centre of the 
plate. Then precultured (25 °C, 7 days) Fusarium culmorum 
SZMC 11039 and Rhizoctonia solani SZMC 21048 strains 
were placed in the centre of plates with agar plugs. After 
that, 100 µL of samples was applied into each hole. As 
solvent control, 10% methanol was used. Mycelial plug 
inoculated without any extracts was used as a control. 
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Antifungal activity of the samples was determined by 
the size of the inhibition zone.

Biodiversity mapping of endophytic fungi of J. communis

Calculating isolation rate and diversity index

The isolation rate of endophytic fungi was calculated as 
the total number of tissue segments infected by fungi 
divided by the total number of tissue segments incubated 
(Kumar and Hyde, 2004).

The diversity of endophytic fungi isolated from 3 
plants were evaluated using the, Shannon-Weiner Index 
(H′), Simpson’s diversity index (1-D), evenness Index ( J) 
and Margalef richness index (D mg) (Hoffman et al. 2008; 
Suryanarayanand and Kumaresan 2000; Kusari et al. 
2012). All the diversity indices were calculated plantwise 
and also tissuewise to analyse the host and tissue specific-
ity of endophytic fungi.

Statistical analysis

Statistical analyses for biodiversity calculations were 
carried out in R 3.5.2 (R core Team 2019). The diversity 

indices were calculated using the Vegan package from R 
3.5.2 (Oksanen et al. 2018). One-way analysis of variance 
(ANOVA) was carried out to test the effect of plant spe-
cies or tissue type (stem and root) on the isolation rate 
and genus richness of endophytic fungi. Post hoc Tukey’s 
Honest Significant Difference tests were performed to 
observe the significant differences among the plant spe-
cies or tissue types at P < 0.05 level.

Results

Investigation of endophytic fungi isolated from J. com-
munis

The J. communis plant parts were collected from Southern 
Hungarian areas and their endophytes were isolated and 
purified, which was followed by sequence-based molecular 
identification (Table 1). 

Altogether, 240 parts were tested involving 60 cuttings 
of leaf, stem, root and cone from 12 different plant samples 
of J. communis. A total of 75 endophytic fungi distributed 
into 3 main classes and 7 main orders were isolated from 
J. communis (Fig. 1). The isolation rates were 0.51, 0.3, 0.35 
and 0.18 for stem, leaf, root and cone, respectively. The 
predominant class was found to be Sordariomycetes, 
similarly to previous studies on Juniperus endophytes 
(Kusari et al. 2009). Most of the isolates belonged to Hy-
pocreales, while the rest of them were members of the 
taxa Pleosporales and Eurotiales (Table 1).

To characterize the biodiversity of J. communis EF, the 
Shannon diversity index (H′) Simpson’s diversity index 
(1-D), and Margalef’s richness (D mg) have been calculated. 
The Shannon-index revealed higher certainty of endo-

Figure 1. Distribution of endophytic fungi isolated from J. communis 
into classes (A) and orders (B).

Figure 2. Venn diagram showing the common and unique fungi along 
the tissues of J. communis.
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Collection code GPS coordinates Plant part Species Genbank ID of ITS

SZMC 27149 N 46°53.338' / E 019°24.483' Stem Alternaria sp. MT940776

SZMC 27150 N 46°53.340' / E 019°24.528' Stem Alternaria sp. MT940777

SZMC 27151 N 46°53.340' / E 019°24.528' Stem Alternaria sp. MT940778

SZMC 27152 N 46°53.338'  E 019°24.483' Stem Alternaria sp. MT940779

SZMC 27153 N 46°53.345'  E 019°24.501' Stem Alternaria sp. MT940780

SZMC 27154 N 46°53.345'  E 019°24.501' Stem Alternaria sp. MT940781

SZMC 27155 N 46°53.345'  E 019°24.501' Leaf Alternaria sp. MT940782

SZMC 27156 N 46°53.345'  E 019°24.501' Stem Alternaria sp. MT940783

SZMC 27157 N 46°53.345'  E 019°24.501' Stem Alternaria sp. MT940784

SZMC 27158 N 46°53.338'  E 019°24.483' Leaf Alternaria sp. MT940785

SZMC 27159 N 46°53.345'  E 019°24.501' Stem Alternaria sp. MT940786

SZMC 27160 N 46°53.345'  E 019°24.501' Stem Alternaria sp. MT940787

SZMC 27161 N 46°53.345'  E 019°24.501' Stem Alternaria sp. MT940788

SZMC 27162 N 46°53.345'  E 019°24.501' Stem Alternaria sp. MT940789

SZMC 27163 N 46°53.338'  E 019°24.483' Stem Alternaria sp. MT940790

SZMC 27164 N 46°53.345'  E 019°24.501' Stem Aspergillus sp. MT993364

SZMC 27165 N 46°53.345'  E 019°24.501' Stem Aspergillus sp. MT993365

SZMC 27166 N 46°53.338'  E 019°24.483' Stem Aspergillus sp. MT993366

SZMC 27167 N 46°53.345'  E 019°24.501' Stem Aspergillus sp. MT993367

SZMC 27168 N 46°53.345'  E 019°24.501' Stem Aspergillus sp. MT993368

SZMC 27169 N 46°53.330'  E 019°24.478' Stem Cladosporium sp. MT993369

SZMC 27170 N 46°53.330'  E 019°24.478' Stem Cladosporium sp. MT993370

SZMC 27171 N 46°53.330'  E 019°24.478' Stem Cladosporium sp. MT993371

SZMC 27172 N 46°53.338'  E 019°24.483' Stem Cladosporium sp. MT993372

SZMC 27173 N 46°53.330'  E 019°24.478' Root Cladosporium sp. MT994503

SZMC 27174 N 46°53.330'  E 019°24.478' Stem Colletotrichum sp. MT994504

SZMC 27175 N 46°53.330'  E 019°24.478' Leaf Colletotrichum sp. MT994505

SZMC 27176 N 46°53.330'  E 019°24.478' Stem Colletotrichum sp. MT994506

SZMC 27177 N 46°53.342'  E 019°24.474' Stem Curvularia sp. MT994507

SZMC 27178 N 46°53.330'  E 019°24.478' Stem Curvularia sp. MT994508

SZMC 27179 N 46°53.330'  E 019°24.478' Stem Didymella sp. MT994509

SZMC 27180 N 46°53.338'  E 019°24.483' Stem Fusarium sp. MT994510

SZMC 27181 N 46°53.342'  E 019°24.474' Stem Fusarium sp. MT994511

SZMC 27182 N 46°53.340'  E 019°24.528' Stem Fusarium sp. MT994512

SZMC 27183 N 46°53.338'  E 019°24.483' Leaf Fusarium sp. MT994513

SZMC 27184 N 46°53.342'  E 019°24.474' Root Fusarium sp. MT982177

SZMC 27185 N 46°53.340'  E 019°24.528' Root Fusarium sp. MT982178

SZMC 27186 N 46°53.338'  E 019°24.483' Root Fusarium sp. MT982179

SZMC 27187 N 46°53.340'  E 019°24.528' Root Fusarium sp. MT982180

SZMC 27188 N 46°53.340'  E 019°24.528' Root Fusarium sp. MT982181

SZMC 27189 N 46°53.340'  E 019°24.528' Root Fusarium sp. MT982182

SZMC 27190 N 46°53.338'  E 019°24.483' Root Fusarium sp. MT982183

SZMC 27191 N 46°53.340'  E 019°24.528' Root Fusarium sp. MT982184

SZMC 27192 N 46°53.340'  E 019°24.528' Root Fusarium sp. MT982185

SZMC 27193 N 46°53.340'  E 019°24.528' Root Fusarium sp. MT982186

SZMC 27194 N 46°53.342'  E 019°24.474' Root Fusarium sp. MT982187

SZMC 27195 N 46°53.340'  E 019°24.528' Root Fusarium sp. MT982188

SZMC 27196 N 46°53.340'  E 019°24.528' Root Fusarium sp. MT982189

SZMC 27197 N 46°53.338'  E 019°24.483' Root Penicillum sp. MT982190

SZMC 27198 N 46°53.340'  E 019°24.528' Leaf Penicillum sp. MT982191

Table 1. Endophytic fungi isolated in this study.
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phytic fungal genus consistency in the stem compared 
to that of the other parts of J. communis. Moreover, the 
Simpson’s-index clearly showed that the stem harboured 
highly diverse fungal endophytes compared to those har-
boured by other plant parts. Finally, based on Margalef’s-
index the stems had high taxonomic richness, while the 
cone had the lowest compared to the other tissues of J. 
communis (Table 2.).

The stems of J. communis harboured 11 unique fungi, 
whereas 4 and 2 were found in leaf and cone samples (Fig. 
2). Interestingly, the roots of J. communis did not harbour 
any unique fungi. This shows that some genus seems to 
be tissue specific. Xylaria sp. were found only in the cone, 

while Pestalotiopsis and Bipolaris were found only in the 
leaf and stem respectively, whereas Curvularia, Aspergillus, 
Didymella and Purpureocillium sp. were specifically found 
in stems (Fig. 3). Fusarium strains were more abundant in 
roots than in other tissues.

Antimicrobial effects of fungal extracts of J. communis 
endophytes 

Gram-positive bacteria were found to be more susceptible 
to the extracted endophytic metabolites than Gram-ne-
gative ones due to the higher number of highly active 
(>90%) extracts (Fig. 4). For B. subtilis, the highest number 
of highly active extracts was recorded in the case of the 

Collection code GPS coordinates Plant part Species Genbank ID of ITS

SZMC 27199 N 46°53.342'  E 019°24.474' Leaf Penicillium sp. MT982192

SZMC 27200 N 46°53.340'  E 019°24.528' Leaf Penicillium sp. MT982193

SZMC 27201 N 46°53.338'  E 019°24.483' Leaf Penicillium sp. MT982194

SZMC 27202 N 46°53.342'  E 019°24.474' Leaf Penicillum sp. MT982195

SZMC 27203 N 46°53.340'  E 019°24.528' Leaf Penicillum sp. MT982196

SZMC 27204 N 46°53.340'  E 019°24.528' Leaf Pestalotiopsis sp. MT982197

SZMC 27205 N 46°53.340'  E 019°24.528' Leaf Pestalotiopsis sp. MT982198

SZMC 27206 N 46°53.338'  E 019°24.483' Leaf Pestalotiopsis sp. MT982199

SZMC 27207 N 46°53.340'  E 019°24.528' Leaf Bipolaris sp. MT982200

SZMC 27208 N 46°53.340'  E 019°24.528' Leaf Bipolaris sp. MT982201

SZMC 27209 N 46°53.338'  E 019°24.483' Leaf Phomopsis sp. MT982202

SZMC 27210 N 46°53.340'  E 019°24.528' Leaf Trichoderma sp. MT997192

SZMC 27211 N 46°53.342'  E 019°24.474' Leaf Trichoderma sp. MT997193

SZMC 27212 N 46°53.342'  E 019°24.474' Cone Trichoderma sp. MT997194

SZMC 27213 N 46°53.342'  E 019°24.474' Cone Trichoderma sp. MT997195

SZMC 27214 N 46°53.342'  E 019°24.474' Cone Trichoderma sp. MT997196

SZMC 27215 N 46°53.342'  E 019°24.474' Cone Trichoderma sp. MT997197

SZMC 27216 N 46°53.338'  E 019°24.483' Cone Trichoderma sp. MT997198

SZMC 27217 N 46°53.342'  E 019°24.474' Cone Trichoderma sp. MT997199

SZMC 27218 N 46°53.342'  E 019°24.474' Cone Trichoderma sp. MT997200

SZMC 27219 N 46°53.340'  E 019°24.528' Cone Trichoderma sp. MT997201

SZMC 27220 N 46°53.340'  E 019°24.528' Cone Xylaria sp. MT997202

SZMC 27221 N 46°53.338'  E 019°24.483' Cone Xylaria sp. MT997203

SZMC 27222 N 46°53.338'  E 019°24.483' Cone Xylaria sp. MT997204

SZMC 27031 N 46°53.338'  E 019°24.483' Stem Purpureocillium sp. MT997205

Table 1. Continued.

Diversity index Stem Root Leaf Cone Total

Simpson’s Dominance (D) 0.912 0.775 0.788  0.666 0.92

Shannon (H’) 2.582 1.630 1.950  1.214 2.85

Pielou’s evenness (J) 0.931 0.910 0.847  0.48 0.89

Margeref richness 4.218 1.894 3.176 1.365 5.32

Table 2. Biodiversity parameters of endophytic fungi isolated from J. communis.
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ethyl acetate extracts of ferment broth (55), while the 
lowest amount of effective extracts (19) was obtained 
from the hexane-based solvent partitions. The mycelial 
extracts proved to be the most effective against E. coli and 
P. aeruginosa, as the numbers of the active extracts were 
25 and 27, respectively. In the case of S. aureus, the highest 
number of effective extracts was obtained for the ethyl 
acetate extracts (43), followed by chloroform-partitioned 
ferment broth samples (37). It is important to highlight 
that strain SZMC 27155 was highly active against all 
bacteria, but it was not active against the tested yeasts and 
plant pathogenic fungi. The ethyl acetate and chloroform 
extracts of strains SZMC 27164 and SZMC 27031 showed 
remarkable inhibitory effects to all tested bacteria and 
the mycelial extracts of these isolates were also active 
against plant pathogenic fungi and yeasts. The Trichoderma 
isolates of this plant showed activity at least against one 

test microbe. The extracts of strain SZMC 27205 showed 
significant inhibitory activity to both Gram-positive and 

Collection code
F. culmorum R. solani

HEX CLF EtOAc C:M HEX CLF EtOAc C:M

SZMC 27198 - - - - - - - +

SZMC 27206 - - - + - - ++ -

SZMC 27209 - - - + - - - -

SZMC 27210 - - - - - - - +

SZMC 27211 - - - - - - - +

SZMC 27212 - - - + - - - +++

SZMC 27213 - - - - - - - +

SZMC 27214 - - - - - - + -

SZMC 27215 - - - - - - + ++

SZMC 27216 - - - - - - - +

SZMC 27218 - - - - - - - +++

Table 3. List of the endophytic fungi extracts showing inhibitory activities to plant pathogenic fungi (HEX – hexane; CLF – chloroform; C:M - chlo-
roform: methanol (4:1) extract of mycelia; EtOAc – Ethyl acetate).

Figure 3. Distribution of endophytic fungi of J. communis at the genus 
level.

Figure 4. Summary of the antibacterial effects of endophytic extracts 
isolated from J. communis (C:M - chloroform:methanol (4:1, V/V) extract 
of mycelia).

Fig. 5. Summary of the antifungal effects of endophytic extracts iso-
lated from J. communis (C:M - chloroform:methanol (4:1, V/V) extract 
of mycelia).
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Gram-negative bacteria. With respect to taxa, Fusarium, 
Pestalotiopsis, Trichoderma, Aspergillus and Purpureocillium 
strains showed high bioactivities and will be suitable for 
further investigations.

Altogether, 27 extracts showed inhibitory effects to 
yeasts, which is over 90% (Fig. 5). Interestingly, both the 
chloroform extract of the ferment broth and the mycelial 
extracts inhibited C. albicans, while C. krusei was mainly 
susceptible to the ethyl acetate extract of the ferment 
broth and to the mycelial extracts.

Previous works showed that the endophytic fungi 
of J. communis were excellent sources of antimicrobial 
compounds (Gherbawy and Elhariry 2016). In our study 
at least one solvent partition of 58 isolates was active 
against B. subtilis, S. aureus and C. albicans. However, only 
a few extracts, particularly the mycelial extracts were 
found to be active against the tested filamentous fungi 
(Table 3). Specifically, mycelial extracts of Trichoderma 
and Purpureocillium strains were active against both of the 
tested fungi. F. culmorum was found to be more resistant 
than R. solani.

Discussion

Endophytic fungi are highly diverse, and their investiga-
tion is very important from different plants to understand 
the biodiversity and structure of the endophytic fungal 
community, which mostly depends on the plant physi-
ology, biogeographical factors and their interplay with 
other pathogenic microorganisms associated with their 
host plant (Arnold et al. 2007). Only a few studies have 
been carried out to study the endophytic fungal commu-
nities in Hungary (Knapp et al. 2012). Therefore, in the 
present work, 75 endophytic strains were isolated from 
J. communis from the Southern part of Hungary and the 
antimicrobial activities of their metabolites evaluated. 

In our study, the culture-dependent method was 
followed for the molecular identification of fungal iso-
lates. Based on ITS sequence analysis, the isolates were 
characterized into 7 orders of 3 classes. All the isolated 
fungi belonged to Ascomycota, which includes the classes 
Dothideomycetes, Sordariomycetes and Eurotiomycetes. 
Sordariomycetes was the dominant class (52%) followed 
by Dothideomycetes (32%) and Eurotiomycetes (16%). 
Such dominance of Sordariomycetes as endophytes has 
also been reported from several plants, e.g., Phragmites 
(Sim et al. 2018) and lichens (U’Ren et al. 2016) indicat-
ing that Sordariomycetes are ubiquitous among the plant 
kingdom. Totally, 14 genera (Alternaria, Aspergillus, Bipo-
laris, Cladosporium, Colletotrichum, Curvularia, Didymella, 
Fusarium, Penicillium, Pestalotiopsis, Phomopsis, Purpureocil-
lium, Trichoderma and Xylaria) were identified (Table 1), 

where the relative abundances of Fusarium, Alternaria and 
Trichoderma were the highest (Fig. 3). The isolation rates 
of endophytic fungi were found to be the highest from 
stem followed by leaf, similarly to the results of previous 
studies on J. communis endophytes (Gherbawy and Elhariry 
2016), whereas similar studies in other plants showed 
higher isolation rate values from the leaf compared to 
stems (Alurappa and Chowdappa 2018).

One of the most important properties of endophytic 
fungi is that they produce a wide variety of compounds 
that protect the plants from plant pathogens (Tan and 
Zou 2001; Strobel and Daisy 2003). In our cases, a total of 
58 isolates (77%) showed antibacterial activity against at 
least one test microrganism. Altogether, 16% of the isolates 
had antibacterial effects with wide spectrum. Five strains 
showed remarkably high inhibitory values (>90%) to all 
the tested strains. Furthermore, regarding the antifungal 
activity, 43 and 31extracts were active against C. albicans, 
and C. krusei, respectively, while 3 and 11 showed inhibi-
tory effects against F. culmorum and R. solani. 

Future examinations could reveal the chemical nature 
of the active metabolites and their potential for practical 
(e.g., pharmaceutical, argricultural) applications.
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