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Toward the Development of Iteration Procedures

for the Interval-Based Simulation of

Fractional-Order Systems
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Abstract

In many fields of engineering as well as computational physics, it is neces-
sary to describe dynamic phenomena which are characterized by an infinitely
long horizon of past state values. This infinite horizon of past data then
influences the evolution of future state trajectories. Such phenomena can
be characterized effectively by means of fractional-order differential equa-
tions. In contrast to classical linear ordinary differential equations, linear
fractional-order models have frequency domain characteristics with ampli-
tude responses that deviate from the classical integer multiples of ±20 dB per
frequency decade and, respectively, deviate from integer multiples of ±π

2
in

the limit values of their corresponding phase response. Although numerous
simulation approaches have been developed in recent years for the numerical
evaluation of fractional-order models with point-valued initial conditions and
parameters, the robustness analysis of such system representations is still
a widely open area of research. This statement is especially true if inter-
val uncertainty is considered with respect to initial states and parameters.
Therefore, this paper summarizes the current state-of-the-art concerning the
simulation-based analysis of fractional-order dynamics with a restriction to
those approaches that can be extended to set-valued (interval) evaluations for
models with bounded uncertainty. Especially, it is shown how verified simu-
lation techniques for integer-order models with uncertain parameters can be
extended toward fractional counterparts. Selected linear as well as nonlinear
illustrating examples conclude this paper to visualize algorithmic properties of
the suggested interval-based simulation methodology and point out directions
of ongoing research.
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1 Introduction

Simulation procedures for fractional-order systems have been investigated in many
current research projects. Such simulation procedures involve the numerically ef-
ficient and accurate evaluation of functions of the Mittag-Leffler type, the im-
plementation of numerically efficient and robust simulation routines based on the
Grünwald-Letnikov differentiation operator for linear and nonlinear system models,
Laplace domain representations for the linear case, the development of frequency
domain-based procedures and the design of software packages such as crone tool-
box. This toolbox includes computational routines for fractional-order time- and
frequency-domain system identification, fractional-order path planning techniques,
and approaches for a fractional-order control synthesis [10,12,13,23,27,30].

Among the approaches mentioned above, the Grünwald-Letnikov operator for
numerically approximating fractional-order derivatives and the corresponding nu-
merical integration of fractional system models is widely used in engineering ap-
plications. It is based on a temporal series expansion of the fractional derivative
operator and coincides, when setting the fractional differentiation order to one (i.e.,
considering classical first-order ordinary differential equations) to the well-known
temporal Taylor series expansion of the solution to an ordinary differential equa-
tion that is typically truncated after some finite order in any numerical simulation
of dynamic systems. The general drawback of this numerical evaluation scheme is
the necessity for a large number of summands in the series expansion to capture
the long-term memory effects of fractional systems with sufficient accuracy. Al-
though the Grünwald-Letnikov operator is generally applicable to linear as well as
nonlinear fractional-order models, the large number of required terms in the series
expansion prevents its naive use to general system models with uncertain parame-
ters and initial conditions due to the inevitably arising wrapping effect. To avoid
this wrapping effect, that also occurs if high-order series expansions are applied in
the case of classical ordinary differential equations with purely integer-order deriva-
tives, this paper is focused on using quasi-analytic representations of the enclosure
of the systems’ time responses by means of Mittag-Leffler functions [10]. Those
functions represent a generalization of classical exponential functions and can be
exploited — as shown for the first time in [33,35] — to represent enclosures for the
sets of reachable states for fractional-order systems if they are extended to the case
of interval arguments.

Besides series expansions in the time domain, also frequency-domain approxi-
mations can be determined [4, 9, 27, 28, 30]. They make use of approximating the
amplitude and phase responses by multiplicative concatenations (i.e., series con-
catenations in the respective signal flow) of fundamental linear Bode plot elements
corresponding to first- and second-order lead and lag elements and, under some cir-
cumstances, input-output transport delays. As such, these frequency-domain tech-
niques can be seen as the approximation of the fractional-order Laplace-domain
transfer functions by using Taylor, respectively, Laurent series to approximate
their numerators and denominators by expressions with integer-order powers of the
Laplace variable (except for an isolated classical transport delay operator). Due
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to this strong relation to the Taylor and Laurent series expansion in the Laplace
domain, the resulting integer-order approximations are only applicable to systems
with dominating linear dynamics within a restricted frequency band. Although
such approximations are commonly not suitable for accurate system simulations,
they are well suited, if control design with sufficiently strong low-pass filter behav-
ior is concerned and, for example, for the experimental identification of fractional
models in restricted frequency bands with applications in engineering and biomedi-
cal tasks such as impedance spectroscopy for battery systems [2,38,39], rheological
material properties [29], or the study of visco-elastic properties of blood cells [5].

Linear control approaches that are described by fractional-order transfer func-
tions can be interpreted as extensions of classical output feedback routines of PID
type (proportional, integrating, differentiating) by replacing the integrating and dif-
ferentiating elements with their respective fractional-order generalizations [23,27].

As already mentioned in the discussion of the Grünwald-Letnikov operator,
the amount of memory required to accurately represent the flow of a fractional-
order system model may become prohibitively large if long integration horizons
are considered. Hence, techniques for a short-term memory storage, going along
with quantifying the errors arising from restarting the numerical integration of a
fractional-order system at some specific point in time, are crucial in practice. In
this paper, techniques for quantifying the effect of resetting the temporal derivative
at some point of time will be used to describe guaranteed interval enclosures of the
arising errors. These interval enclosures are then interfaced in a novel manner
with the basic iteration approaches published in [33, 35] by combining them with
the solution representations in terms of Mittag-Leffler functions. In such a way, the
iterative solution scheme developed by the authors can be employed more efficiently
for simulation scenarios in which long prediction horizons are of practical interest.

Although the numerical integration routines based on temporal series expan-
sions, such as the Grünwald-Letnikov operator, are practically useful for a large
variety of fractional-order system models that are characterized by point-valued
system parameters and precisely known initial conditions, research concerning the
analysis of uncertain but bounded parameters is still at the very beginning if frac-
tional models are concerned. This problem has not yet received the same amount
of attention as for the case of integer-order sets of ordinary differential equations.
To the knowledge of the authors, only initial works were performed in this direction
which are based on generalizations of the Picard iteration to the fractional case [22].
Using this iteration, it becomes possible to compute guaranteed outer interval enclo-
sures for those states that are reachable over a sufficiently short prediction horizon.
However, these enclosures — resulting from the integral formulation of the Picard
iteration, see Theorem 3 in this paper — are typically quite conservative due to the
fact that the resulting bounding boxes describe time-invariant state bounds that
are valid for the complete prediction window.

In contrast to fractional-order systems, the task of verified simulation and reach-
ability analysis has been studied extensively over the last decades in the frame of
integer-order dynamic system models and corresponding control laws. Such tech-
niques are readily applicable in terms of software-based simulation packages and
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can be employed — among others — for the verification of safety constraints of
dynamic systems. State-of-the-art general-purpose initial value problem solvers for
such tasks make use of so-called verified simulation approaches which are based on
either interval analysis, zonotopic representations of the sets of reachable states, or
Taylor model arithmetic [26,33,36].

By means of set-valued computations, these solvers avoid time-consuming grid-
ding techniques and Monte-Carlo sampling, where it has to be pointed out addi-
tionally that neither of these gridding and sampling techniques can provide any
guarantee of determining outer solution tubes that contain the exact sets of reach-
able states of a general dynamic system model with absolute certainty. In contrast
to grid- or sampling-based approaches, the fundamental property of those tubes
computed with the help of verified approaches is that a guaranteed outer hull of
the solutions of the underlying uncertain system model is determined [26]. To ac-
count for specific system properties such as a-priori proven asymptotic stability of
the system dynamics (which is often verified in advance if a guaranteed stabilizing
control design has been performed prior to evaluating the state equations), an ex-
ponential enclosure technique was developed by the working group of the authors
for the class of integer-order systems [36]. Relations of this exponential enclosure
approach to specific system properties such as cooperativity and positivity of a dy-
namic system [37] were published in [33]. If these latter properties are guaranteed
to be satisfied, it becomes possible to evaluate lower and upper bounding trajec-
tories independently during the numerical simulation. Such properties are often
exploited during the design of interval observers which can analogously be derived
for both, integer-order and fractional-order system representations [3, 8, 20,31].

If state equations are not a-priori proven to be cooperative, especially the use
of the exponential enclosure technique allows for reducing overestimation (i.e., to
avoid unphysically wide bounds for the computed state trajectories) in the case of
asymptotically stable dynamics. This is caused by the fact that the exponential
enclosure technique [33, 35] aims at preserving stability properties in combination
with a reduction of the wrapping effect [16]. As shown in previous work, this
approach is most successful if a transformation of the state equations into a quasi-
linear system representation exists [35]. This transformation then has to ensure
that the simulation routine makes use of a set of quasi-linear state equations given
by a diagonally dominant form.

In this paper, the exponential enclosure technique is further developed for
fractional-order systems, where exponential functions describing the guaranteed
state enclosures have to be replaced by functions of the Mittag-Leffler type. The use
of Mittag-Leffler functions as the corresponding ansatz for the solution enclosures
is motivated by the fact that these functions represent the exact solutions of linear
fractional-order models with precisely known parameters, cf. [7,11]. To allow for an
efficient implementation of numeric simulation routines, preconditioning strategies
of the state equations into a diagonally dominant form, the influence of truncation
errors occurring from a finite-time approximation of the fractional-order systems’
memory, and monotonicity properties of Mittag-Leffler functions with respect to
its argument and with respect to the non-integer differentiation order need to be
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investigated. These aspects are discussed in detail in the current paper together
with novel extensions towards the quantification of truncation errors resulting from
infinite memory effects of fractional-order dynamics.

Following the summary of preliminaries and the state-of-the-art in Secs. 2 and 3,
the exponential enclosure technique for interval-valued uncertain systems, which
was so far primarily studied for classical sets of ordinary differential equations, is
generalized to fractional-order models in Sec. 4. Here, we rely on the iteration pro-
cedure stated already in [33, 35]. In the current paper, relations of this approach
to the state-of-the-art, especially the integral formulation of the Picard iteration
in Theorem 3, and extensions by a more detailed analysis of monotonicity prop-
erties allowing for an efficient implementation in an interval arithmetic framework
together with handling temporal truncation errors are worked out as the novel con-
tributions in Sec. 5. Sec. 6 provides illustrating linear and nonlinear examples for
the use of the proposed enclosure technique before the paper is concluded with an
outlook on future work in Sec. 7.

2 Preliminaries

In the course of this paper, simulation routines for the case of integer-order dif-
ferential equations are first summarized. These routines are based on an interval-
based exponential enclosure technique. According to the corresponding publica-
tions in [33, 36], they result from a differential formulation of the Picard iteration.
Second, they are generalized toward the counterpart of fractional-order dynamics.
This generalization is essentially based on the replacement of exponential functions
by suitable Mittag-Leffler functions as already motivated in [33,35].

For that purpose, the two-parameter Mittag-Leffler function1 [10, 12, 14] is de-
noted by

Eν,β(ζ) =

∞∑
i=0

ζi

Γ (νi+ β)
(1)

with the general argument ζ ∈ C, the gamma function Γ (νi+ β), as well as the
parameters ν ∈ R+ and β ∈ R.

All system models in this paper are assumed to be given in terms of explicit,
autonomous, time-invariant2 state equations which are re-written — if possible —
according to Def. 1 into a quasi-linear form to enhance efficiency of the numerical
evaluation.

Definition 1 (Quasi-linear system model). After factoring out the state vector
x(t) ∈ Rn of a nonlinear autonomous system, initial value problems for quasi-linear

1The two-parameter Mittag-Leffler function serves as an exact solution representation for linear
fractional-order differential equations according to [7, 11].

2Note, the restriction to autonomous, time-invariant systems can be removed by the introduc-
tion of auxiliary state variables for the time argument as well as for time- and state-dependent
expressions included in control inputs. Corresponding procedures, leading to an increase of the
system dimension, were discussed exemplarily in [36] for the integer-order case.
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models
ẋ(t) = A (x(t)) · x(t) , A (x(t)) ∈ Rn×n , (2)

are specified with the vector of initial conditions

x(0) ∈ [x] (0) . (3)

Analogously, a commensurate-order set of fractional-order differential equations of
Caputo type [27, 30] is defined by

x(ν)(t) = A (x(t)) · x(t) with 0 < ν < 1 , (4)

where initial conditions x(0) are defined according to (3).

For both system models in Def. 1, the initial state vector x(0) is assumed to be
described by the interval representation [x] (0) = [x(0) ; x(0)], where the inequali-
ties xi(0) ≤ xi(0) hold element-wise for each vector component i ∈ {1, . . . , n}.

The existence of a solution to the problem specified according to (4) with the
initial conditions (3) is ensured if either of the iteration procedures in Secs. 3 or 4
converges to an appropriate interval enclosure.

Definition 2 (Diagonally dominant model). Diagonally dominant quasi-linear sys-
tem models are given by the state-space representations

ż(t) = f (z(t)) =
(
T−1 ·A (T · z(t)) ·T

)
· z(t)

= A (z(t)) · z(t) , A (z(t)) ∈ Rn×n ,
(5)

and

z(ν)(t) = f (z(t)) = A (z(t)) · z(t) (6)

after a suitable similarity transformation

x(t) = T · z(t) , T ∈ Rn×n , z(t) ∈ Rn (7)

of the systems in Def. 1.

Remark 1. In this paper, we restrict ourselves to the case of real-valued similarity
transformations in (7). These transformations lead to the real-valued initial state
enclosures

z(0) ∈ T−1 · [x] (0) (8)

for both integer-order and fractional-order system models. As shown in [33,36] for
integer-order system models, also complex-valued similarity transformations are
possible. They are advantageous for the case of systems with conjugate-complex
eigenvalues and, hence, oscillatory dynamics. For both the real- and complex-valued
case with system models having an eigenvalue multiplicity of one, the transforma-
tion matrix T is composed of the eigenvectors of A (xm), computed at the interval
midpoint xm = 1

2 · (x(0) + x(0)). For generalizations to higher multiplicities, which
were so far only investigated for integer-order scenarios, see [36].
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Remark 2. Where necessary for a compact notation of the iteration formulas
derived in the following sections, it is further assumed that a translation of the
state vector has been performed prior to solving the considered simulation task so
that the trajectories of the systems under consideration converge to the origin of
the state space if the dynamics are asymptotically stable.

Example 1. Fractional-order differential equations appear, as stated in the intro-
duction of this paper, in a variety of engineering applications. For example, series
connections of electric subcircuits containing resistors and capacitors can be used
for modeling the dynamics of Lithium-Ion batteries. The corresponding impedance
(as the quotient between terminal voltage and current) then takes the form of the
integer-order (IO) frequency response

ZIO(ω) =

n∑
i=0

bi · (ω)i

n∑
i=0

ai · (ω)i
(9)

with the imaginary unit  and the angular frequency ω ≥ 0. However, experimental
impedance spectroscopy data gives rise to the more general fractional-order (FO)
expression, see [2, 38,39],

ZFO(ω) =

n∑
i=0

bi · (ω)νi

n∑
j=0

aj · (ω)νj
, (10)

where νi and νj are non-negative, not necessarily integer-valued parameters with
0 ≤ ν0 < ν1 < ν2 < . . ..

Here, numerator expressions of order νi are related to fractional derivatives of
the terminal current, while the orders νj in the denominator are connected with
a non-integer derivative of the terminal voltage. Due to the fact that a repeated
fractional-order differentiation, first of order νa and second of order order νb corre-
sponds in total with a derivative of order νa + νb, see [27, 30], the type of system
model mentioned in this example, can always be transferred into a commensurate-
order state-space representation according to Defs. 1 and 2 by setting ν to the
greatest common divisor of all fractional orders νi and νj .

3 State-of-the-Art Techniques Applicable to the
Verified Simulation of Fractional-Order System
Models

3.1 Exploitation of Differential Inclusions and Cooperativity

Theorem 1 (Differential inclusions for fractional-order differential equations).
Time-varying bounds for a fractional-order system described according to Def. 2
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are given by the interval vector

z(t) ∈ [v(t) ; w(t)] (11)

in which the individual components of the vectors v(t) and w(t) are solutions to
the coupled lower and upper bounding systems

v(ν)(t) = fv (v(t),w(t)) ≤ z(ν)(t) = f (z(t)) ≤ w(ν)(t) = fw (v(t),w(t)) (12)

representing differential inclusions for the dynamic system z(ν)(t) = f (z(t)).

Proof. Theorem 1 is a straightforward consequence of Müller’s theorem originally
published for integer-order ordinary differential equations [25]. Substituting the
integer-order derivatives in this theorem by their respective fractional-order coun-
terparts completes the proof.

Corollary 1 (Differential inclusions for cooperative fractional-order differential
equations). Time-varying bounds for cooperative, positive fractional-order systems
described according to Def. 2 are given by the interval vector

z(t) ∈ [v(t) ; w(t)] , vi(t) ≥ 0 , i ∈ {1, . . . , n} , (13)

in which the individual components of the vectors v(t) and w(t) are solutions to
the mutually decoupled lower and upper bounding systems

v(ν)(t) = f (v(t)) ≤ z(ν)(t) = f (z(t)) ≤ w(ν)(t) = f (w(t)) . (14)

Proof. Assume a cooperative dynamic system with strictly non-negative states
zi(t) ≥ 0 satisfying the sufficient criterion for cooperativity [8, 17, 32, 37] given
by

Ji,j (z) ≥ 0 for all i 6= j , i, j ∈ {1, . . . , n} with J =
∂f (z)

∂z
. (15)

An element-wise minimization (respectively, maximization) of the function f (z(t))
over the state interval (13) directly leads to its element-wise defined lower bound
f (v(t)) (respectively, upper bound f (w(t))).

The property exploited in Corollary 1 is widely employed in the frame of observer
design for both, integer-order and fractional-order system models. Suitable refer-
ences concerning observer design as well as for its dual task, namely, cooperativity-
preserving control synthesis can be found in [8, 15, 20, 32, 34]. If cooperativity is
either directly given after first-principle modeling of the systems in Def. 1 or Def. 2,
Corollary 1 provides overestimation-free state bounds if the element-wise minimiza-
tions and maximizations mentioned in the proof above coincide with actually reach-
able operating conditions. It has to be noted that in this case it is not necessary
(from a practical point of view) to apply interval-based simulation routines as long
as temporal discretization errors in the differential equations for v(t) and w(t) are
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negligibly small. For several practically relevant system models, such as the interval
observer design for a fractional-order battery model in [15], cooperativity can be
ensured by design. Alternatively, a cooperativity-enforcing change of variables can
be performed to remove the restrictive assumptions imposed by cooperativity if a
dynamic system model is initially not cooperative. Details about suitable trans-
formation techniques are given in [18, 19, 21]. However, if cooperativity is either
not given directly or cannot be achieved by these similarity transformations, the
following alternatives need to be exploited to determine guaranteed bounds for all
reachable states.

3.2 Transformation of Fractional Systems into Equivalent
Ordinary Differential Equations

Theorem 2 ( [6] Solution of fractional-order differential equations by nonlinear
time transformations). Let f (z(t)) be a bounded and continuous function. The
solution to the time-invariant fractional-order differential equations considered in
Def. 2 according to

z(ν)(t) = f (z(t)) (16)

with the bounded initial conditions z(0) is given by

z(t) = z

(
tν

Γ (ν + 1)

)
, (17)

where z (τ) is determined as the solution to an initial value problem to the set of
integer-order differential equations

dz(τ)

dτ
= f (z(τ)) (18)

with the initial condition
z(0) = z(0) (19)

and the nonlinear time transformation

τ = t− (tν − τ · Γ (ν + 1))
1
ν (20)

leading to

f (z(τ)) = f
(
z
(
t− (tν − τ · Γ (ν + 1))

1
ν

))
, (21)

in which τ is the independent variable and t is considered as a parameter.

Although Theorem 2 provides a quite general approach that makes initial value
problem solvers originally developed for the case of integer-order differential equa-
tions applicable to the fractional-order case, it has two main drawbacks if uncer-
tain systems are concerned: First, the nonlinear time transformation according to
Theorem 2 leads to the fact that even for time-invariant system models, usually
time-varying initial value problems need to be solved. In the general case, this
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can only be done by augmenting the state vector by the time variable τ according
to the procedure discussed in [36], leading inevitably to an increase in the system
dimension. Second, this augmentation of the state vector as well as the required
backward transformation (17) of the computed solution usually introduce some ad-
ditional amount of overestimation due to multiple dependencies on common interval
variables.

Remark 3. The time-varying characteristics of the transformed system model
in (21) with (20) highlights the property of fractional-order differential equations,
that restarting the temporal solution procedure at some point of time T > 0 purely
on the basis of the novel initial conditions z(T ) with simultaneously resetting the
time to zero would inevitably lead to truncation errors. Handling of these errors by
means of guaranteed error bounds on the derivative operator is discussed further
in Secs. 5 and 6 of this paper.

3.3 A Picard Iteration Procedure for Fractional-Order Dy-
namics

Theorem 3 ( [1, 22] Integral formulation of Picard iterations for fractional-order
differential equations). Let f (z(t)) be a continuous Lipschitzian function on a
bounded state and time domain. The solution to the time-invariant fractional-
order differential equations considered in Def. 2 at the point of time T > 0 can be
computed iteratively according to the fixed-point iteration

z〈κ+1〉(T ) := z(0) +
1

Γ(ν)
·
T∫

0

(T − s)ν−1 · f
(
z〈κ〉(s)

)
ds , κ ∈ N0 , (22)

with the initialization z〈0〉 := z(0) at the iteration step κ = 0.

This iteration generalizes to interval bounded initial conditions z(0) ∈ [z] (0) =
[z0] according to

[z]
〈κ+1〉

:= [z0] +
1

Γ(ν + 1)
· [0 ; T ν ] · f

(
[z]
〈κ〉
)
, κ ∈ N0 , (23)

where convergence requires [z]
〈κ+1〉 ⊆ [z]

〈κ〉
, leading to z(t) ∈ [z]

〈κ+1〉
for all t ∈

[0 ; T ].

Theorem 3 provides the possibility to determine time-invariant bounds [z]
〈κ+1〉

containing all possible states z(t) that are reachable over the complete time in-
terval t ∈ [0 ; T ]. However, the fact that these bounds are time-invariant makes
them excessively wide at the single point t = T . Hence, generalizations of this
iteration are derived in the following section to obtain time-varying bounds which
— for asymptotically stable dynamics — contract temporally towards the system’s
equilibrium state.
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4 Interval-Based Iteration Procedure:
Generalization of Exponential State Enclosures
to Fractional-Order Systems

In this section, an interval-based iteration procedure is derived for the computation
of guaranteed state enclosures for fractional-order system models. To make this
paper self-contained, an already existing variant for integer-order models as well as
the initial work [33, 35] for the fractional-order case are briefly reviewed, before a
detailed discussion about specific extensions to the fractional-order case is provided.

4.1 Exponential State Enclosures for Integer-Order Ordi-
nary Differential Equations

Definition 3 (Exponential state enclosure). The time-dependent exponential en-
closure function

z∗(t) ∈ [ze] (t) := exp ([Λ] · t) · [ze] (0) , [ze] (0) = [z0] (24)

with the parameter matrix

[Λ] := diag {[λi]} , i ∈ {1, . . . , n} , (25)

is denoted as a verified exponential state enclosure for the system model (5) with (8)
if it is determined according to Theorem 4.

Theorem 4 ( [36] Iteration for exponential state enclosures). The exponential state
enclosure (24) is guaranteed to contain the set of all reachable states z∗(T ) at the
point of time t = T > 0 according to

z∗(T ) ∈ [ze] (T ) := exp ([Λ] · T ) · [ze] (0) , (26)

if [Λ] is set to the outcome of the converging iteration

[λi]
〈κ+1〉

:=
fi

(
exp

(
[Λ]
〈κ〉 · [t]

)
· [ze] (0)

)
exp

(
[λi]
〈κ〉 · [t]

)
· [ze,i] (0)

, (27)

i ∈ {1, . . . , n}, with the prediction horizon [t] = [0 ; T ].

Proof. Assume that the integral form of the Picard iteration, see [36] and Theorem 3
with ν = 1,

z∗(t) ∈ [ze]
〈κ+1〉

:= [ze] (0) +

t∫
0

f
(

[ze]
〈κ〉

(s)
)

ds (28)

describes a converging iteration that encloses the exact solution z∗(t) to the initial
value problem of an integer-order system as given in Def. 2 in terms of an outer
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interval hull over all possible state trajectories over the time horizon t ∈ [t] = [0 ; T ]
with T > 0.

The evaluation of the iteration (28) for the ansatz of an exponential state en-
closure (24) with (25) according to Def. 3 yields the relation

z∗(t) ∈ exp
(

[Λ]
〈κ+1〉 · t

)
· [ze] (0)

= [ze] (0) +

t∫
0

f
(

exp
(

[Λ]
〈κ〉 · s

)
· [ze] (0)

)
ds

(29)

between the interval matrices [Λ]
〈κ〉

and [Λ]
〈κ+1〉

for the two subsequent iteration
steps κ and κ + 1. The differentiation of (29) with respect to time results in the
differential form of the Picard iteration which is given by

ż∗(t) ∈ [Λ]
〈κ+1〉 · exp

(
[Λ]
〈κ+1〉 · t

)
· [ze] (0)

= f
(

exp
(

[Λ]
〈κ〉 · t

)
· [ze] (0)

)
= f

(
[ze]
〈κ〉

(t)
) (30)

with its corresponding interval extension for the complete prediction window [t]
according to

ż∗([t]) ∈ [Λ]
〈κ+1〉 · [ze]〈κ+1〉

([t]) = f
(

[ze]
〈κ〉

([t])
)
. (31)

All equivalent expressions (29)–(31) describe a converging iteration process if

[λi]
〈κ+1〉 ⊆ [λi]

〈κ〉
(32)

and hence
[Λ]
〈κ+1〉 ⊆ [Λ]

〈κ〉
(33)

are satisfied. Due to inclusion monotonicity [16] of the exponential function, the
relations (32) and (33) imply

exp
(

[Λ]
〈κ+1〉 · t

)
⊆ exp

(
[Λ]
〈κ〉 · t

)
(34)

for all t ∈ [t]. Overapproximating the left-hand side of (31), cf. [33, 36], in a
conservative manner with an interval

[λi]
〈κ+1〉 ⊆ [λ̃i]

〈κ+1〉 ⊆ [λi]
〈κ〉

(35)

according to

diag
{

[λ̃i]
〈κ+1〉

}
· [ze]〈κ〉 ([t]) =: f

(
[ze]
〈κ〉

([t])
)

(36)

and solving the equality in (36) for the yet unknown bounds [λ̃i]
〈κ+1〉 with subse-

quently renaming this parameter into [λi]
〈κ+1〉

completes the proof.
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For further discussions concerning the necessary zero-exclusion requirement
0 6∈ [ze,i] ([t]) for all components i ∈ {1, . . . , n} of the state vector as well as for
generalizations to multiple real and/or complex eigenvalues, the reader is referred
to [36]. Fundamental step-size control strategies and the definition of time-varying
transformation matrices leading to less conservative quasi-linear system models
than those in Def. 2 are given in [19].

Corollary 2. For quasi-linear state-space representations according to Def. 1,
which are transformed into the diagonally dominant form of Def. 2, the component-
wise notation

żi(t) = fi (z(t)) =

n∑
j=1

aij (z(t)) · zj(t) (37)

of the state equations allows for a reduction of interval-related dependency prob-
lem, the wrapping effect, and the resulting computational effort if formula (27) is
reformulated symbolically into

[λi]
〈κ+1〉

:= aii

(
[ze]
〈κ〉

([t])
)

+

n∑
j=1
j 6=i

{
aij

(
[ze]
〈κ〉

([t])
)
· e(([λj ]

〈κ〉−[λi]〈κ〉)·[t]) · [ze,j ] (0)

[ze,i] (0)

}
.

(38)

4.2 Mittag-Leffler Type State Enclosures for Fractional-Or-
der Differential Equations

The focus of this subsection is the generalization of the exponential enclosure tech-
nique to sets of commensurate fractional-order models. The fundamental iteration
summarized in the following Theorem 5 was first published by the authors in [33]
and [35]. The novelty of the present paper is the detailed description of relations
to the state-of-the-art approaches in Sec. 3 and the in-depth discussion of interval-
based numerical evaluation schemes together with the reliable consideration of the
infinite-horizon memory property that becomes crucial as soon as the integration
time horizon is divided into several temporal subslices of finite duration.

Definition 4 (Mittag-Leffler type state enclosure). The time-dependent Mittag-
Leffler type enclosure function

z∗(t) ∈ Eν,1([Λ] · tν) · [ze] (0) , [ze] (0) = [z0] (39)

with the diagonal parameter matrix [Λ] := diag {[λi]}, i ∈ {1, . . . , n}, is denoted as
a verified Mittag-Leffler type state enclosure for the system model (6) with (8) if
it is determined according to Theorem 5.

Theorem 5 ( [33, 35] Iteration for Mittag-Leffler type enclosures). The Mittag-
Leffler type state enclosure (39) is guaranteed to contain the set of all reachable
states z∗(T ) at the point of time t = T > 0 according to

z∗(T ) ∈ Eν,1([Λ] · T ν) · [ze] (0) , (40)
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if [Λ] is set to the outcome of the converging iteration

[λi]
〈κ+1〉

:=
fi

(
Eν,1

(
[Λ]
〈κ〉 · [t]ν

)
· [ze] (0)

)
Eν,1

(
[λi]
〈κ〉 · [t]ν

)
· [ze,i] (0)

, (41)

i ∈ {1, . . . , n}, with the prediction horizon [t] = [0 ; T ].

Proof. According to [7,11], the exact solution of a linear fractional-order differential
equation

z(ν)(t) = λ · z(t) (42)

of Caputo type — for which only the initial conditions of the system states at t = 0
are specified — is given by the analytic expression

z(t) = Eν,1 (λtν) · z(0) . (43)

As for the case of integer-order differential equations, this relation serves as an
ansatz for describing verified state enclosures. By substituting it (cf. (30) in Theo-
rem 5) into the differential formulation of the Picard iteration, which results from
determining the fractional-order time derivative of the result in Theorem 3, the
expression

z(ν)(t) ∈
(

[Λ]
〈κ+1〉

)
·Eν,1

(
[Λ]
〈κ+1〉 · tν

)
· [ze] (0)

= f
(
Eν,1

(
[Λ]
〈κ〉 · tν

)
· [ze] (0)

)
=: f

(
[ze]
〈κ〉

([t])
) (44)

is obtained.
Overapproximating the Mittag-Leffler type state enclosure Eν,1

(
[Λ]
〈κ+1〉 · tν

)
in the iteration step κ + 1 by the enclosure [ze]

〈κ〉
([t]) obtained in the previous

iteration step on the left-hand side of (44), as it was also done in the proof of
Theorem 4 for the integer-order counterpart, leads to

diag
{

[λ̃i]
〈κ+1〉

}
· [ze]〈κ〉 ([t]) = f

(
[ze]
〈κ〉

([t])
)
. (45)

Solving this expression for [λ̃i]
〈κ+1〉 with subsequently renaming this parameter

into [λi]
〈κ+1〉

completes the proof of Theorem 5.

Corollary 3. Quasi-linear state-space representations of fractional-order differen-
tial equations in diagonally dominant form according to Def. 2 can be simulated
efficiently by the symbolically simplified iteration scheme

[λi]
〈κ+1〉

:= aii

(
[ze]
〈κ〉

([t])
)

+

n∑
j=1
j 6=i

aij ([ze]
〈κ〉

([t])
)
·
Eν,1

(
[λj ]
〈κ〉 · [t]ν

)
Eν,1

(
[λi]
〈κ〉 · [t]ν

) · [ze,j ] (0)

[ze,i] (0)

 .
(46)
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Remark 4. In contrast to Eq. (38) derived for integer-order systems, where ana-
lytic simplifications of exponential functions become possible, the quotient of two
Mittag-Leffler functions in (46) cannot be simplified further in the general case.
This imposes further restrictions on the numerical evaluation of (46) using tech-
niques from interval arithmetic in the following section.

Remark 5. For the order ν = 1, the iteration formulas in Theorems 4 and 5
become identical due to E1,1(z) ≡ ez.

5 Evaluating Mittag-Leffler Functions for Interval
Arguments

As described in [14], rough (outer) bounds for the evaluation of Mittag-Leffler
functions with (real-valued) interval arguments can be determined by exploiting
the property of a continuous interpolation between Gaussian (exponential) and
Lorentzian (rational) functions according to

exp (−ζ) < Eν,1 (−ζ) ≤ 1

1 + ζ
, ζ ≥ 0 (47)

in Fig. 1a and

exp
(
−ζ2

)
< Eν,1

(
−ζ2

)
≤ 1

1 + ζ2
, ζ ≥ 0 (48)

in Fig. 1b. However, if only subintervals from the range ν ∈ [0 ; 1] are required
for a specific application scenario, these bounds are usually too conservative for
the interval-based evaluation of the iteration formulas presented in the previous
section.

Therefore, floating point evaluations of the Mittag-Leffler function using the
Matlab implementation of R. Garrappa [10] are extended in the following subsec-
tions to obtain tight guaranteed interval bounds for the case of real-valued argu-
ments. The case of complex interval arguments is a topic for future research.

5.1 Interval Evaluation of the Two-Parameter Mittag-Leffler
Function with Real Arguments

Theorem 6 ( [35] Interval bounds for the Mittag-Leffler function with real argu-
ments). Interval evaluations of Mittag-Leffler functions with real-valued arguments
z ∈ [z] = [z ; z] are given by

Eν,β ([z]) ∈
[
E∗ν,β ([z])

]
=
[
Ẽν,β ([z])

]
+

ε

1 + ε
·
(

1 +
∣∣∣[Ẽν,β ([z])

]∣∣∣) · [−1 ; 1] (49)

with the tolerance value ε of a floating point function evaluation of (1) and the
interval definition [

Ẽν,β ([z])
]

=
[
5Ẽν,β (z) ; 4Ẽν,β (z)

]
, (50)
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Figure 1: Guaranteed bounds for Mittag-Leffler functions for the parameter range
ν ∈ [0 ; 1], where the Lorentzian upper bound is highlighted by the dashed line
and the gray color code visualizes the dependence on ν.

where 5 and 4 denote switchings of the rounding mode of a CPU towards minus
and plus infinity, respectively, in the corresponding floating point evaluations.

Proof. The interval extension (50) directly results form the strict monotonicity of
the two-parameter Mittag-Leffler function with real-valued arguments. Moreover,
a guaranteed tolerance value ε (ε ≈ 10−15 for the case of the implementation by
R. Garrappa [10]) allows to express the relative deviation between the floating point
approximation Ẽν,β(z) and the exact function value Eν,β(z) at some value z ∈ R,
representable in floating point arithmetic, according to∣∣∣Eν,β(z)− Ẽν,β(z)

∣∣∣
1 + |Eν,β(z)|

=
|∆|

1 +
∣∣∣Ẽν,β(z) + ∆

∣∣∣ ≤ ε . (51)

Solving the inequality (51) for |∆| relies on the fact that

|∆|

1 +
∣∣∣Ẽν,β(z) + ∆

∣∣∣ ≤ |∆|

1 +
∣∣∣Ẽν,β(z)

∣∣∣− |∆| (52)

holds. Assuming
|∆|

1 +
∣∣∣Ẽν,β(z)

∣∣∣− |∆| ≤ ε (53)

in correspondence with (51) leads to the inequality

|∆| ≤ ε

1 + ε
·
(

1 +
∣∣∣Ẽν,β(z)

∣∣∣) (54)
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which characterizes the interval bounds [−1 ; 1] · |∆| of the worst-case approxi-
mation error. Adding this tolerance interval to the outward rounded point-valued
evaluation of the Mittag-Leffler function in Eq. (50) completes the proof of Theo-
rem 6.

5.2 Exploitation of Monotonicity in Interval Evaluations of
the Mittag-Leffler Function

To reduce overestimation in the interval evaluation of the iteration procedure ac-
cording to Theorem 5, monotonicity properties of the Mittag-Leffer function with
respect to the time t, the solution parameter λ as well as to a derivative order ν
specified as an interval variable are investigated in this section.

Theorem 7 ( [35] Monotonicity-based interval bounds for the Mittag-Leffler func-
tion). The range of function values for the Mittag-Leffler function with the uncer-
tain real-valued parameters ν ∈ [ν ; ν], 0 < ν ≤ 1, 0 < ν ≤ 1 and λ ∈

[
λ ; λ

]
,

λ < 0 and the non-negative time argument t ∈
[
t ; t

]
, t ≥ 0, can be bounded tightly

according to the interval enclosure

Eν,1 (λtν) ∈
[
E∗ν,1 (inf ([X ])) ; E∗ν,1 (sup ([X ]))

]
(55)

with [X ] := [λ] · [t][ν], where sup ([X ]) ≤ 0 holds.

If monotonicity with respect to ν can be proven additionally, the relation sim-
plifies to

Eν,1 (λtν) ∈
[
E∗ν,1

(
λ · tν

)
; E∗ν,1

(
λ · tν

)]
(56)

for the monotonically decreasing branch in ν and to

Eν,1 (λtν) ∈
[
E∗ν,1

(
λ · tν

)
; E∗ν,1

(
λ · tν

)]
(57)

for the increasing branch; the change of monotonicity occurs on the surface depicted
in Fig. 2.

Proof. Formula (55) is a direct consequence of the continuous interpolation prop-
erty of Mittag-Leffler functions between Gaussian and Lorentzian functions, see the
beginning of Sec. 5 and [12, 24]. For a proof of monotonicity with respect to t, λ,
and ν, see [35].

Remark 6. For intervals [ν], [λ], and [t] which do not intersect with the surface
depicted in Fig. 2, the Eq. (56) holds for ν values below the surface (monotonically
decreasing) and (57) for values above (monotonically increasing); otherwise (55)
must be applied.
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Figure 2: Surface, where the Mittag-Leffler function Eν,1 (λtν) changes its mono-
tonicity with respect to ν.

5.3 Interval Bounds for Temporal Truncation Errors due to
the Infinite Memory Property of Fractional-Order Sys-
tems

It is well known that fractional-order system models are characterized by an infinite
memory of previous states [27,30]. Hence, restarting a simulation at some point of
time t = tk+1 on the basis of state information z(tk+1) computed by a simulation
that was originally initiated at some point tk < tk+1 does not only have to account
for these new initial conditions3. It also needs to consider the effect of temporal
truncation errors which can be expressed by component-wise error bounds resulting
from the fact that a fractional-order derivative of order ν with a memory start at
t = tk is replaced with a new starting point t = tk+1. The corresponding derivative
operators are subsequently denoted by tkDνt z(t) and tk+1

Dνt z(t), respectively.

Theorem 8 (Bounds for temporal truncation errors). Resetting the initial point
of time of the integration of fractional-order models defined in Def. 2 based on
Theorem 5 after completion of a time interval of length T requires the inflation of
the right-hand side of the state equations by the symmetric interval [−µ ; µ] at the
point T with

µ :=
Z · (tk + T )

−ν

|Γ(1− ν)|
(58)

3For the sake of compactness, the notation in this subsection is based on Def. 2. A transfer
towards Def. 1 solely requires to replace all occurrences of the vectors z(t) with their counterpart
x(t).
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and the component-wise defined supremum of the set of reachable states

Zi = sup
t∈[t0 ; tk+1]

|zi(t)| . (59)

The re-initialized initial value problem is then given by

tk+TDνt z(t) = z(ν)(t) = f (z(t)) + [−µ ; µ] =: f̃ (z(t)) (60)

with the initial state enclosure z(tk + T ) ∈ [z] (tk + T ) resulting form the solution
of

t0Dνt z(t) = z(ν)(t) = f (z(t)) with z(t0) ∈ [z] (t0) , t0 = 0 . (61)

Proof. Theorem 8 is a consequence of the component-wise defined error bounds for
a general fractional derivative operator of a commensurate system model on the
time interval tk + T ≤ t ≤ tk+1 that can be computed according to [30] by

|tkDνt z(t)− tk+TDνt z(t)| ≤ ZT−ν

|Γ(1− ν)|
=: µ (62)

As presented in [30], Eq. (62) relies on the component-wise defined supremum (59)
of the reachable states denoted by the vector Z.

A visualization of this state resetting procedure, with a corresponding adjust-
ment of the right-hand side of the set of state equations is given in the following
section. The following section accounts both for linear and nonlinear system mod-
els, as well as for a first possibility to interface the bounding approach according
to Eq. (62) with a contractor technique [16] applied to the solution parameters
[λi] that for some system models yields tighter bounds than those given purely by
applying the iteration of Theorem 5 after inflating the right-hand sides of the state
equation with the vector µ. The reason for these possible enhancements can be
seen in the fact that the original bound µ captures an infinitely long time window
starting at t = tk, while in many practical scenarios much shorter windows are
sufficient for the reliable forecast of the set of all possible state trajectories.

Theorem 9 (Contractor for the state enclosure of fractional-order systems). As-
sume that a reference solution z(t) ∈ [zref ] (t) has already been computed for the
initial value problem with the initial point of time t = tk that is valid up to the
point t = t∗ > tk + T and that the application of Theorem 5 to the re-initialized
initial value problem (60) in Theorem 8 with the initial point of time t = tk+T has
provided the interval bounds [ze] (t) = exp ([Λ] · (t− (tk + T )))·[ze] (tk + T ) that are
also valid up to t = t∗ with the associated solution parameters [λi], i ∈ {1, . . . , n},
a contractor is given by

[λi] := [λi] ∩ [λ̃i] (63)

with

[λ̃i] =
f̃i ([ze] ([tk + T ; t∗])) ∩ f̃i ([zref ] ([tk + T ; t∗]))

[ze,i] ([tk + T ; t∗]) ∩ [zi,ref ] ([tk + T ; t∗])
. (64)



40 Andreas Rauh and Julia Kersten

Proof. The validity of Theorem 9 is a direct consequence of the fact that both
[zref ] (t) and [ze] (t) are verified state enclosures according to z(t) ∈ [zref ] (t) and
z(t) ∈ [ze] (t) and, thus, have to satisfy the fractional-order differential equation in
the componentwise notation (44). Intersecting the evaluation of (44) for both state
enclosures after consideration of the error bounds µ for the corresponding point of
restart and solving the result for the interval of the solution parameter [λ̃i] yields
the relation (64).

6 Illustrating Examples

6.1 Visualization of Interval Bounds for Temporal Trunca-
tion Errors of Linear Fractional-Order Systems

To visualize the influence of temporal truncation errors on the solution quality,
consider the Caputo type linear fractional-order differential equation

z(ν)(t) = −z(t) (65)

with the differentiation order ν = 0.5 as well as the initial state z(0) = 1. According
to (42) and (43) its exact solution is given by

z(t) = E0.5,1

(
−t0.5

)
for t ≥ 0 . (66)

This solution is visualized in Fig. 3.
In addition, assume that the overall integration time horizon t ∈ [0 ; Tf ] with

Tf = 10 for this system is split into N equidistant slices [τk] := [tk−1 ; tk] with
t0 = 0 and tk = k · Tf

N , k ∈ {1, . . . , N}. Neglecting the infinite-time horizon memory
of this system, approximate solutions z̃(t) are computed recursively by means of

z̃(t) =

(
E0.5,1

(
−
(
Tf
N

)0.5
))k−1

· E0.5,1

(
− (t− tk−1)

0.5
)
, (67)

where z̃(0) = z(0) and t ∈ [τk]. As shown in Fig. 3, the quality of these approxi-
mations becomes worse, the larger the value N is chosen.

To quantify the effect of the infinite-horizon memory, the error quantification
according to Sec. 5.3 is included in the iteration scheme for determining the param-
eter [λ] according to Theorem 5. It becomes obvious that the interval enclosures
included in Fig. 4 for the time steps k ≥ 2 contain the exact solution to the initial
value problem. Note, the computation of the parameter enclosures [λ] according
to Theorem 5 was interfaced with intersecting the iteration result with a further
conservative expression obtained by

[λ̃] :=
− [ze] ([τk]) + [−1 ; 1] · µ(tk−1)(

E0.5,1

(
− [τk]

0.5
)
· [1− η ; 1 + η]

)
∩ [ze] ([τk])

, 0 < η < 1 , (68)

as a special case of Theorem 9, where the numerator directly results from computing
the state enclosure as shown in (41) and the denominator includes some a-priori
knowledge on the domain of reachable states in the time interval [τk].



Interval-Based Simulation of Fractional-Order Systems 41

t

z(
t)

0
0

0.4

0.2

0.6

1.0

0.8

exact solution (66)

2 4 6 8 10

N = 10
N = 100

Figure 3: Visualization of truncation errors resulting from the infinite-horizon mem-
ory effect of fractional-order systems.
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Figure 4: Interval-based quantification of truncation errors resulting from the
infinite-horizon memory effect of fractional-order systems with η = 0.1.
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6.2 A Nonlinear Example: Interval Bounds for Different In-
tegration Horizons

As a second, nonlinear example for the application of Theorem 5, the state equation

z(ν)(t) = p · z3(t) = p · a(z(t)) · z(t) (69)

with an uncertain initial state z(0) ∈ [z] (0), the interval parameter p ∈ [p], and
the uncertain differentiation order ν ∈ [ν] is considered. Note that Eq. (69) already
includes the reformulation into a quasi-linear system model so that the modified
iteration formula (46) becomes applicable.

In the following, two cases differing in the amount of uncertainty according to

Case a: [z] (0) = [0.99 ; 1.0], [p] = [−2 ; −1.99], [ν] = [0.8 ; 0.81]

and

Case b: [z] (0) = [0.5 ; 1.0], [p] = [−2 ; −1], [ν] = [0.8 ; 0.9]

are distinguished for this example.
Using the integration time horizons T ∈ {0.25, 0.50, 1.0} for both Case a and

Case b, without restarting the integration at any point in the interior of the
temporal window t ∈ [0 ; T ], the state enclosures in Figs. 5a and 5b are obtained.
It can be noticed that for both cases the iteration describes non-diverging state
enclosures despite the fact that constant parameter bounds [λ] were determined for
the complete integration time horizons. Both, for small uncertainty levels in Fig. 5a
and large uncertainty in Fig. 5b, these computed interval bounds become wider for
increasing lengths of the integration horizon, due to the fact that solutions close
to the steady state need to be incorporated. This statement can also be verified
by investigating the numerical parameter values produced by Theorem 5 (listed in
ascending order of T ) for

Case a: [λ] ∈ {[−2.0001 ; −0.5261], [−2.0001 ; −0.2276], [−2.0001 ; −0.0684]}

as well as for

Case b: [λ] ∈ {[−2.0001 ; −0.0667], [−2.0001 ; −0.0270], [−2.0001 ; −0.0066]}.

Considering again the Case a, a restart of the integration is now performed
at the points tk ∈ {0.25, 0.50, 0.75}. The resulting state enclosure, including a
comparison with the bounds obtained for a single time window of length T = 1 are
shown in Fig. 5c. Here, the contractor introduced in Theorem 9 has the form

[λ̃] :=
−p ·

(
[ze] ([τk]) ∩ [zref ] ([τk])

)3
+ [−1 ; 1] · µ(tk−1)

[ze] ([τk]) ∩ [zref ] ([τk])
, (70)

where [zref ] ([τk]) is the evaluation of the enclosure function obtained for the overall
time window without any temporal discretization. It can be seen that the subdi-
vision of the time window (T = 1) leads to a noticeable reduction of the computed
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(c) State enclosures for Case a, including a
restart of the integration at the points tk ∈
{0.25, 0.50, 0.75}.

Figure 5: Guaranteed state enclosures for different integration horizons T ∈
{0.25, 0.50, 1.0} and different levels of uncertainty.

interval widths. Future work will aim at the development of further contractor ap-
proaches, allowing both for a refinement of the bounds µ and for incorporating sim-
ulations computed over long time windows as some kind of measured state enclosure
as it would be done in the frame of an interval-based state observer synthesis. To
perform a comparison with the parameter bounds listed above, the following results
were obtained: [λ] ([τ1]) ∈ [−2.0001 ; −0.5261], [λ] ([τ2]) ∈ [−3.3658 ; −0.0121],
[λ] ([τ3]) ∈ [−2.6236 ; −0.0064], and [λ] ([τ4]) ∈ [−2.1951 ; −0.0035] with [τ1] =
[0 ; 0.25], [τ2] = [0.25 ; 0.50], [τ3] = [0.50 ; 0.75], and [τ4] = [0.75 ; 1.0].
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7 Conclusions and Outlook on Future Work

In this paper, extensions of an interval-based exponential enclosure technique orig-
inally developed for integer-order sets of ordinary differential equations were pre-
sented to obtain a novel Mittag-Leffler function-based generalization valid also for
explicit, continuous-time sets of fractional-order differential equations. This type
of iteration was first discussed by the authors in [33,35], however, without account-
ing for the practically necessary extension towards the use of temporal subinter-
vals. The corresponding time discretization scheme requires the quantification of
truncation errors — which are caused by the infinite-horizon memory effects of
fractional-order systems — and which do not exist for classical ordinary differential
equations.

A first implementation of the novel routine for quantifying these error bounds,
has been presented and interfaced for the first time with a contractor approach that
further allows for reducing conservativeness of the obtained solution sets.

Future work will deal with a generalization of the iteration scheme to system
models with an oscillatory behavior, for which it seems to be reasonable that
complex-valued state enclosures are determined as it was already demonstrated
for the case of the integer-order counterpart [36]. Moreover, possible strategies
for determining optimal subdivision strategies of the investigated integration time
horizons — with the aim of minimizing the computed interval diameters — will be
investigated.
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[8] Efimov, D., Räıssi, T., Chebotarev, S., and Zolghadri, A. Interval State Ob-
server for Nonlinear Time Varying Systems. Automatica, 49(1):200–205, 2013.
DOI: 10.1016/j.automatica.2012.07.004.

[9] El-Khazali, R., Batiha, I.M., and Momani, S. Approximation of fractional-
order operators. In Agarwal, P., Baleanu, D., Chen, Y., Momani, S., and
Machado, J.A.T., editors, Fractional Calculus. ICFDA 2018. Springer Proceed-
ings in Mathematics & Statistics, vol. 303, pages 121–151, Singapore, 2019.
Springer Singapore. DOI: 10.1007/978-981-15-0430-3_8.

[10] Garrappa, R. Numerical Evaluation of Two and Three Parameter Mittag-
Leffler Functions. SIAM Journal on Numerical Analysis, 53(3):1350–1369,
2015. DOI: 10.1137/140971191.

[11] Ghosh, U., Sarkar, S., and Das, S. Solution of System of Linear Fractional
Differential Equations with Modified Derivative of Jumarie Type. American
Journal of Mathematical Analysis, 3(3):72–84, 2015. DOI: 10.12691/ajma

-3-3-3.

[12] Gorenflo, R., Kilbas, A.A., Mainardi, F., and Rogosin, S.V. Mittag-Leffler
Functions, Related Topics and Applications. Springer–Verlag, Berlin, Heidel-
berg, 2014. DOI: 10.1007/978-3-662-43930-2.

[13] Gorenflo, R., Loutchko, J., and Luchko, Y. Computation of the Mittag-Leffler
Function and its Derivatives. Fractional Calculus & Applied Analysis (FCAA),
5(4):491–518, 2002.

[14] Haubold, H.J., Mathai, A.M., and Saxena, R.K. Mittag-Leffler Functions and
Their Applications. Journal of Applied Mathematics, 2011:51 pages, 2011.
DOI: 10.1155/2011/298628.

[15] Hildebrandt, E., Kersten, J., Rauh, A., and Aschemann, H. Robust Inter-
val Observer Design for Fractional-Order Models with Applications to State
Estimation of Batteries. In Proc. of the 21st IFAC World Congress, Berlin,
Germany, 2020.

[16] Jaulin, L., Kieffer, M., Didrit, O., and Walter, É. Applied Interval Analysis.
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