Berend Gábor: Mitigating the knowledge acquisition bottleneck for Hungarian word sense disambiguation using multilingual transformers.
Preview |
Cikk, tanulmány, mű
msznykonf_017_077-089.pdf Download (308kB) | Preview |
Abstract
A major hurdle in training all-words word sense disambiguation (WSD) systems for new domains and/or languages is the limited availability of sense annotated training corpora and that their construction is an extremely costly and labor-intensive process. In this paper, we investigate the utilization of multilingual transformer-based language models for performing cross-lingual WSD in the zero-shot setting. Our empirical results suggest that by relying on the intriguing multilingual abilities of pre-trained language models, we can infer reliable sense labels to Hungarian textual utterances in the all-word WSD setting by purely relying on sense-annotated training data in English.
Item Type: | Conference or Workshop Item |
---|---|
Heading title: | Szemantika |
Journal or Publication Title: | Magyar Számítógépes Nyelvészeti Konferencia |
Date: | 2021 |
Volume: | 17 |
ISBN: | 978-963-306-781-9 |
Page Range: | pp. 77-89 |
Language: | English |
Event Title: | Magyar számítógépes nyelvészeti konferencia (17.) (2021) (Szeged) |
Related URLs: | http://acta.bibl.u-szeged.hu/73340/ |
Uncontrolled Keywords: | Nyelvészet - számítógép alkalmazása |
Additional Information: | Bibliogr.: p. 86-89. és a lábjegyzetekben ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.02. Computer and information sciences 06. Humanities 06. Humanities > 06.02. Languages and Literature |
Date Deposited: | 2021. Sep. 28. 10:55 |
Last Modified: | 2022. Nov. 08. 11:49 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73359 |
Actions (login required)
![]() |
View Item |