Bálint Domonkos and Mihajlik Péter: Smooth inverse frequency based text data selection for medical dictation.
Preview |
Cikk, tanulmány, mű
msznykonf_017_233-242.pdf Download (407kB) | Preview |
Abstract
Under-resourced domain problem is significant in automatic speech recognition, especially in small languages such as Hungarian or in fields where data is often confidential such as finance and medicine. We introduce a method using word embedding and smooth inverse frequency (SIF) based distance measurement to filter public domain web corpora. The selection for (medical) domain matching documents can be scaled. The resulted text is used to train an augmented language model for a medical dictation system. We show that using the appropriately scaled selection leads to optimal performance of the ASR system over the baselines where no data augmentation was applied or all the augmentation data was added.
Item Type: | Conference or Workshop Item |
---|---|
Heading title: | Poszter, laptopos bemutató |
Journal or Publication Title: | Magyar Számítógépes Nyelvészeti Konferencia |
Date: | 2021 |
Volume: | 17 |
ISBN: | 978-963-306-781-9 |
Page Range: | pp. 233-242 |
Language: | English |
Event Title: | Magyar számítógépes nyelvészeti konferencia (17.) (2021) (Szeged) |
Related URLs: | http://acta.bibl.u-szeged.hu/73340/ |
Uncontrolled Keywords: | Nyelvészet - számítógép alkalmazása |
Additional Information: | Bibliogr.: p. 240-242. és a lábjegyzetekben ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.02. Computer and information sciences 06. Humanities 06. Humanities > 06.02. Languages and Literature |
Date Deposited: | 2021. Sep. 28. 13:00 |
Last Modified: | 2022. Nov. 08. 11:49 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73371 |
Actions (login required)
![]() |
View Item |