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1 Introduction

The fractional calculus is a generalization of ordinary differentiation and integration to ar-
bitrary non-integer orders. Fractional differential equations arise in various fields of science
and engineering. Indeed, we can find numerous applications in control theory of dynamical
systems, chaotic dynamics, fractals, optics, and signal processing, fluid flow, viscoelasticity,
polymer science, rheology, physics, chemistry, biology, astrophysics, cosmology, thermody-
namics, mechanics, and other fields. For further details and applications, see, for example,
[8,24,28,29]. For some fundamental results on the theory of fractional calculus and fractional
ordinary and partial differential equations, we refer to the reader to the books [1,2,21,25,35],
the articles [5,6,17], and the references therein.

Impulsive differential equations describe observed evolution processes of several real world
phenomena in a natural manner, and exhibit several new phenomena such as noncontinua-
bility and merging of solutions, rhythmical beating, etc. Dynamic processes associated with
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sudden changes in their states are governed by impulsive differential equations. This theory
models many phenomena in control theory, population dynamics, medicine, and economics.
Recently, fractional differential equations with impulse effects have also received considerable
attention, for example, the monographs by Abbas et al. [3] Benchohra et al. [13], Lakshmikan-
tham et al. [26], Samoilenko and Perestyuk [30], and the papers of Benchohra et al. [9,16,19],
Chang et al. [20], Henderson et al. [23], and Wang et al. [32], as well as the references cited
therein.

On the other hand, boundary value problems for fractional differential equations have re-
ceived considerable attention because they occur in the mathematical modeling of a variety of
physical processes; see for example [6,7,11,12,34]. In [10,14,15,18], the authors give existence
and uniqueness results for some classes of implicit fractional order differential equations.

Recently, in [27,31] the authors introduce the exponential fractional calculus and give
some existence and uniqueness results for solutions of initial and boundary value problems
for fractional differential equations involving Caputo-exponential fractional derivatives (as
defined in the next section).

The main goal of this paper is to study existence and uniqueness results for solutions
to a more general class of impulsive boundary value problem (BVP for short) given by the
following nonlinear implicit fractional-order differential equation:

D o(t) = f(t,o(t), Dy @(t)), foreachte CJ, k=0,1,...,m, (1.1)
ACD|,§:tk:Ik (C’D (tk_))’ k=1,...,m, (12)

c10(a) + 2@ (b) = c3, (1.3)

wherea = tg < t] < ... <ty < typa1 = D, E’DZ& denotes the Caputo-exponential fractional

derivative of order o, 0 < & < 1, ] = [a,b], Jo = [at1], k = (htks1], kK = 1,2,...,m,
f:] xR xR — Ris a given function, ¢y, ¢y, c3 are real constants with ¢; + ¢2 # 0, A®@|—y, =
@ () —w(t;), and @ (1) = limy_o+ @(tx + h) and @ (t; ) = limy,_,o- @(tx + h) represent
the right and left hand limits of @(t) at t = t;, respectively.

The present paper is organized as follows. In Section 2, some notations are introduced
and we recall some preliminary concepts about Caputo-exponential fractional derivatives and
some auxiliary results. In Section 3, two results on the impulsive boundary value problem
(1.1)~(1.3) are presented: the first one is based on the Banach contraction principle and the
second one on Schaefer’s fixed point theorem. In the last section, we give two examples to
illustrate the applicability of our main results.

2 Preliminaries

In this section, we introduce notations, definitions, and lemmas that are useful in the next
section. Let | := [a,b] such that a < b. By C := C(J,R) we denote the Banach space of all
continuous functions @ from | into R with the supremum norm
|@leo = sup [@(£)].
te]

As usual, AC(]) denote the space of absolutely continuous function from | into R. We
denote by AC!(J) the space

AC/(]) == {60 ] = R:°D" lo(t) € AC(]), D = e—fjt} )
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where n = [a] + 1, with [a] the integer part of .
In particular, if 0 < a < 1, then n = 1 and ACL(]) := AC,()).

Definition 2.1 ([27,31]). The exponential fractional integral of order &« > 0 of a function
h € L'(],E) is defined by

(“Izh)(t) == 1“(11x) /at (ef — es)%1 h(s)e’ds, foreach t € ],

where I'(+) is the (Euler’s) Gamma function defined by

[(&) = /0 Yo tay, &>0.

Definition 2.2 ([27,31]). Let « > 0 and h € AC!(]J). The exponential fractional derivatives of
Caputo type of order « is defined by

(cDgh)(t) == F(l) /ﬂt (e — es)nw*l (e_sjs>nh(s)ed_ss, for each t € J,

n—uw es
where n = [a] 4+ 1. In particular, if « = 0, then
(ﬁD?_)h) (t) == h(t).
Lemma 2.3 ([27,31]). Let « > 0, n =[] + 1, and h € ACJ(]). Then we have the formula

n—1 (&5 — eu)k
BEDim© —he - ¥ CL
k=0 :

*Dfn(a).

Lemma 2.4. Let « > 0, and h € AC}(]). Then the differential equation
¢Dih(t) =0
has the solution
BE) = o + (6 — &) 4 (e — )2 o4 g (€ — ),
wheren; € R,i=0,1,2,...,n—1,and n = [a] + 1.
Lemma 2.5. Let « > 0, and h € AC/(]). Then
“IY(“DEh) (t) = h(t) + 10 +1m1(e° —e®) +1a(e® — ") + ...+ 11 (s — )",
forsomen; € R,i=0,1,2,...,n—1,and n = [a] + 1.

Theorem 2.6 ([22] (Banach’s fixed point theorem)). Let C be a non-empty closed subset of a Banach
space X; then any contraction mapping F of C into itself has a unique fixed point.

Theorem 2.7 ([22] (Schaefer’s fixed point theorem)). Let X be a Banach space and © : X — X be
a completely continuous operator. If the set

e={w e X:®=A0w, for some A € (0,1)}

is bounded, then ® has fixed point.
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3 Main results

Consider the set of functions
PC(JR)={@:] >R | @€ C((tx, txx1),R), k =0,...,m, and there exist
@(t)and @(t, ), k=1,...,m, with@(t;) = @(t)}.
This set, together with the norm

|@l[pc = sup |@(t)],
te]

is a Banach space. Let Jo = [a,t1] and Jx = (tk, tgeq] fork=1,...,m.
Now, let us start by defining what we mean by a solution of the problem (1.1)—(1.3).

Definition 3.1. A function @ € PC (J,R) N (UL AC, (Jx,R)) is said to be a solution of (1.1)-
(1.3) if @ satisfies the equation (D% @(t) = f(t,@(t), tD%,@(t)), on J; and the conditions

Aw’t:tkzlk ((D(tl?)), fork=1,...,m,

C]CD(IZ) + CZCO(b) = C3.
To prove the existence of solutions to (1.1)—(1.3), we need the following auxiliary lemmas.

Lemma 3.2. Let 0 < a« < 1 and let ¢ : | — R be continuous. A function @ is a solution of the
integral equation

m

L [cz Yh@() re) [ (o) ;"((S;ems
' i=1 7/t a

i=1

+co /t: (eb — es>a71 qu((zesds - C3} + /at (e — es)%1 1?((365613'

ift€lat],

[ t — m m t; a— s
D2 leli@e el [f @ - 8
i=1 i=17ti-1 (a)
b a—1 (S) k )
b_e)  Tsetds — (o (] te (bt
e /tm (e ¢ ) T(a)® ds C?’} +1;Il (@ (£)) if t € (ti, b,
ot a1 ¢(s) ! a—1 ¢(s)
+ / eli — ¢ I o5ds + el — e 37265,
i—zl tiq ( ) F(DC) t ( ) 1"(“)
(3.1)
wherek =1,...,m, if and only if, @ is a solution of the fractional BVP
Dro(t) =o¢(t), te] (3.2)
A®|i—y, = Ik (@ (1)), fork=1,...,m, (3.3)
c1@0(a) + co@(b) = cs. (34)

Proof. Assume that @ satisfies (3.2)—(3.4). If t € [a, 1], then

cDpa(t) = ¢(t).
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By Lemma 2.5,

@(t) =m0+ Lo(t) =10+ 1_,(1“) /at (e — es)a_l ¢(s)e’ds.

If t € (t1,t2], then by Lemma 2.5 we obtain

=1 (@ (t])) + [770 + 1“(104) atl (e — es)m_1 ¢(s)e’ds
+1"(10c)/t1t (¢ — &))" g(s)e’ds

If t € (tp, t3], then by Lemma 2.5 we have

1

o(t) = (t5) + 1"(1a) /t: (e — &) p(s)e’ds

= A(D‘t:tz + @ (tZ_) + I‘(la) /t (et _ 65)0671 (P(s)esds

tr

=hL(@(ty))+ [170 + 4L (@ () + 1"(1a) /at1 (eh — es)"‘_1 ¢(s)e’ds
+F(11x) /: (e — es)%1 (p(s)esds] + F(la) /t: (ef — es)%1 p(s)e’ds
=nm+[h(@(ty))+L(@(t;))] + [r(la) /ﬂt1 (el — es)”“l ¢(s)e’ds

Py €O o] [ ) et

Repeating this process, the solution @(t) for t € (f, ty,1], wherek =1, ..., m, can be written as
k 1 k ti t: a—1
ot) =m+ Y 1@ () + a1 [ (=) gls)etds
= F((X) i=1Ytic1

e @ gl

It is clear that
@(a) = 1o
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(D(b) =1+ .Eli ((D (tz_)) + 1_‘(1“) i/ﬁtil (eti _ es)lx—l @(S)esds

+ 1"(10¢) /tb (eb - es>a71 p(s)e’ds.

Hence, by applying the boundary conditions c1@(a) + c2@(b) = c3, we see that

3 = 170(C1 +C2) + Co i[i ((D (tz_>) + % i/tt_ll (eti _es)afl q)(s)esds

i=1

+ % /t: (eb — es)ail @(s)e’ds.

Then,

-1 3 - ECER Sl L — ) p(s)esds
o) = o |e L) + g X [ @ -e) o
2 b b_ s a-l Sds — ‘ -
+F((x) /tm (e e) @(s)e’ds C3} +1:Z1:L (@ (t7))
k  rt; o t ; . s
+ 1"(104) ;/tzl (el —¢) L o(s)esds + 1“(10¢) /tk (ef =€) " o(s)eds.

Conversely, assume that @ satisfies the impulsive fractional integral equation (3.1).
If t € [a,t] then c1@(a) + c2@(b) = c3, and using the fact that (D5 is the left inverse of “I%
gives
¢Diw(t) = ¢(t), foreacht € [a,t].

If t € (ty, teyq] for k =1,...,m, then, by using the fact that ¢DEC =0, where C is a constant,
and ED;’; is the left inverse of elfl‘{ , we have

Dy @(t) = ¢(t), foreacht € (ty, tysq]-
Also, we can easily show that
AC’D|t:tk:Ik(C’D(tk_)), k:1,...,m. O

Now, we state and prove our first existence result for the problem (1.1)—(1.3); it is based on
the Banach contraction principle. The following hypotheses will be used in the sequel.

(H1) The function f : ] x R x R — R is continuous.
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(H2) There exist constants k; > 0 and 0 < k» < 1 such that
‘f(t/wl/wl) _f(t/w2/w2)| S k1|CD1 _(D2| +k2‘wl — Wy,
for any @1, @y, w1, wp € Rand t € J.

(H3) There exists a constant ¢ > 0 such that

|Ii(@1) — k(@) | < |1 — @2,

for each @1, @, € Rand k=1,2,...,m.

Set ( , )a
k o Y (m+1) (e
YT M T gt A T (a+1)
Theorem 3.3. Assume that (H1)-(H3) are satisfied. If
p(mé+uz) <1, (3.5)

then the boundary value problem (1.1)—=(1.3) has a unique solution on J.

Proof. To transform the problem (1.1)—(1.3) into a fixed point problem, consider the operator
©: PC(J,R) — PC(],R) defined by

-1 - - 0 /ti i s\e1 s
Ii K = i
o+ 0 622 (cD (tz )) + T(a) ; - (e e ) p(s)e’ds

*rii)/tb (eb‘es)a14’<S>€Sd~°'—03]+ Y k(@ (k) (3.6)

a<ltp<t

Z / ‘ (etk — es)txil @(s)e’ds + r(llx) /t (et — eS)"‘f1 @(s)e’ds,

a<te<t’te1 ti

O(@)(t) =

1

M)

where ¢ € C(J,R) satisfies

p(t) = f(t,@(t), o(t)).
It is clear that solutions of problem (1.1)—(1.3) are the fixed points of the operator ®. Now, for
@1, @2 € PC(J,R) and for each t € |, we have

@@mo—m@wnsm%grﬁwﬁm@»—f@ﬂhm
*i@ﬁﬁi@—ﬂ“%wmwwst
i [ (=€) elonts) - galolls
+ 8 (@ () ~ I (@2 ()
* F<1“) a<t2k<t /t:kl (et" — es)ail e’|p1(s) — ga2(s)|ds

i r(la) /t: (¢ = )" elgr(s) — ga(s)lds,
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where @1, ¢ € C(J,R) are such that

p1(t) = f(t,@1(t), 1(t)) and  @a(t) = f(t, @2(t), ga(t)).
By (H2), we have

|91(5) — @2(s)| = [f(t, @1(t), 1(t)) — f(t, @2(t), @2(t))]
< kil@1(t) — @2(t)| + ka|@1(t) — @2(t)],

" [P1(s) — @2(s)| < v [@1(s) — @2(s)]. (3.7)
Hence, for each t € J,
0(@1)() - 0@ (] < 2 | ¢ (1)~ ()|
P NGRS I CORECIES
L[ (E ) el - el o
# Ll ()~ o2 ()]
PR L[ e e el

ZX /t (e — es)”"l e’ |@1(s) — @a(s)| ds

r ) te
2] ym (&b —e)" oy (ef —e)"
@ — @
ym (e —e?)" (e —eh)”
et F'(a+1) I'(a+1) 01 = @2]|pc

m b a\%
v —It(lzx)—(kel) ?) ]H‘@l—wznpc-

|ca )
- 11
<|Cl+02!

1@(@1) — O(@2) || pc < p1 (M& + p2) ||@1 — @2]| pe -

By (3.5), the operator © is a contraction. Hence, by Banach’s contraction principle, ® has a
unique fixed point that is a unique solution of (1.1)—(1.3). O

mé +

Thus,

Our second existence result is based on Schaefer’s fixed point theorem (Theorem 2.7
above). Let us introduce the following condition:

(H4) There exist constants 5, I > 0 such that
Ik (@)] < &lo] +1,

foreachwe Rand k=1,2,...,m.
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Notice that (H4) is weaker than condition (H3).

Theorem 3.4. Assume that conditions (H1), (H2), and (H4) hold. If

i (mé+ ) <1, (38)
then the problem (1.1)—(1.3) has at least one solution on J.

Proof. We shall use Schaefer’s fixed point theorem to prove that ®, defined by (3.6), has at
least one fixed point on J. The proof will be given in several steps.

Step 1: © is continuous. Let {v,} be a sequence such that v, — v in PC(J,R). Then, for each
te],

©(va)(t) = O(0) ()] <

o, D o € ) e nts) — g0l

a<tp<t

where ¢,, ¢ € C(],E) satisfy
on(t) = f(ton(t), @u(t)) and @(t) = f(t0(t), @(t)).

By (H2), we have
[Pn(t) — @) = | f (£, 0a(t), @u(t)) — f (t,0(), 9(1))]

< ky [oa(t) —o(t)| + k2 |@n(t) — @(t)] -

Then,

[@n(t) —@(B)] < v [oa(t) —o(t)].
Since v, — v, we have ¢, (t) — ¢(t) as n — oo for each t € J. Let § > 0 be such that, for each
t € J, we have |¢,(t)| < d and |¢(t)| < 6. Then,

(e = &) e gu(s) — p(s)] < (¢ — )1 [|pu(s)] + | (s)]]
< 25(€t _ es)a—les

and

(e — &) e pu(s) — @(s)] < (e —e)* e[| @n(s)] + ()]
< 25(efr — es)""les.
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For each t € ], the functions s — 26(ef — ¢¥)* le* and s — 25(efs — ¢%)¥~1¢® are integrable on
[a,t]. Then, the Lebesgue dominated convergence theorem and (3.9) imply that

|©(v,)(t) —O(v)(t)] = 0 asn — oo,
and so
|1O(uy) — O(u)|lpc =0 asn — oo.
Therefore, © is continuous.

Step 2: © maps bounded sets into bounded sets in PC(J,R). It suffices to show that for any > 0,
there exists a positive constant £ such that, for any v € By = {v € PC(J,R) : [|[v||pc < 6}, we
have ||©(v)||pc < ¢. Now for each t € ],

cal ¢ L -
OEMI < T SN+ g L [ 9(s)ds

+F(1¢x)/t: (eb—es)ai es|q0(s)|ds]+ | + ) k(e (t)]

| lc1 + ¢ a<tr<t (3.10)
k .
S [ e ot as

1
I'(a) a<te<t -1
- 1/t (¢ =) e [g(s)] ds
F(‘x) t '

where ¢ € C(J,R) satisfies

y (H2), for each t € ] we have

lp(8)] = |f (£, 0(t), 9(8)) — £ (£,0,0) + f (£,0,0)]
<|f (to(t), 9(t)) = £ (£,0,0)[ + [ (£,0,0)|

<ki|o| +ka|@(t)| + f.
Thus, _
o) < ol + L (3.11)

From this and (3.10), for any v € B;, we have

ol [ (71147 foye@-e)
|©(v)(t)] < \Cl—iC2| m((;"|v|—|—1>—|—m<’y|v|+ ) T(x+1)

fo\(@—e)” c3]
(ﬂvH— k> T(a+1) lc1 + 2 m(@\v[—i—)
eb — ) f (eb—e)
J””(W’H ) T(a+1) (7|v|+1—k2> Tat1)

_(_le] Fiol LT fo\ (m+1) (" —e)” [
_<|c1+cZ]+1> m(§’U’+I>+<’Y‘U‘+1—k2> F(a+1) ]+|C1+C2|
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= <|c1|c+2‘cz| “)
= [m (&+1)+ <5+£

=:/,

o = f N mA1) ()" |3
(@ 1)+ (0 2 ) P el
)

Step 3: © maps bounded sets into equicontinuous sets in PC(J,R). Let 7, » € J with 7y < 1o, B;
be a bounded set in PC(],R) as in Step 2, and let v € B;. Then, we have

©(0)(12) — ©(v)(m)]

|cs]
lc1 + c2|

which implies that ||@(v)||pc < ¢

< r(loc) /Tl {(eTz —e5) T — (e _€S>a71] e[lo(s)]ds
+r(1a) /“’2 =) eflpeldst L K ()]
+r(10<) » / (e =) e lo(s)  ds

: (7 ol + it m) g L — e — -y

+2(eTz_eTl)0€] —|—(T2_Tl) [(E‘U"f'T)‘f— (’Y‘U’—f— (1 fk2)> (lf —e”)
_ f 1 T a\u (o) a\&
< (7‘5+(1—k2)>r(a+1) [(e —e)" — (e — ")

N N A YT,
(5‘5“)*(7‘”(1—1@)) T(at 1)

As 11 — T, the right-hand side of the above inequality tends to zero. As a consequence of
the steps 1 to 3 together with the Ascoli-Arzela theorem, we conclude that ® : PC(J,R) —
PC(],R) is completely continuous.

+2(e? —e™)"] + (. — n)

Step 4: A priori bounds. It remain to show that the set
¢={vePC(J,R):v=A0O(v), forsome A € (0,1)}

is bounded. Let v € ¢; then v = A®(v) for some 0 < A < 1. Thus, for each t € |, we have

m

afon s [ @0 o

=1

+FZ¢) /t: (eb — es>a_1 ¢(s)e’ds — 63} +A Z Ix (U (tI:))

a<tp<t
A

W Z /tk (etk _ es)ﬂt—l (p(s)esds n r()\a) /t (et B es)a—l q)(s)esds.

a<tp<t’te-1 ti

o(t) =

C1 —|—C2

_|_
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From (3.11) and (H4), for each t € |, we obtain

i eb_ea"‘
m(g\v]+f>+m<'y\v]+lfk2>( )

I'(a+1)

ol0)] < 2
( ol fk>(eza_fu1))a +|c1|if’C2,+m(5lv|+T)
oo (vt 2 ) S (o L)
(2 +1) [n )+ (vm I)eeneeer],

(zx—i—l) |C1+C2|
2] 7 v (m+1) (e
§<’C1+C2|+1> <m§+ Tt ) >|v\

I3 > = flm+1) (¢ —en)" lcs|
1 1
+<|Cl—i—c2|+ M T e+ ) Javal

- .
< (”l‘f+yz> o] + 1 <m1+ ka£2> ‘Cl\ 3|c2|‘
Thus,
- }
[1 — M1 (”l(: M2>:| ||UHPC S M1 <m1+ fZ’i2> + ‘C1| 3|C2|'

By using condition (3.8), it follows that

" <m1+fﬂz>+ lcs| ]

le1+co
- (o)

This shows that the set € is bounded. As a consequence of Schaefer’s fixed point theorem, ®
has at least one fixed point which in turn is a solution of (1.1)—(1.3). O

=: M.

1o]lpc <

Remark 3.5. Often times using different techniques of proof for the same type of result neces-
sitates requiring different hypotheses. It interesting to point out here that we have also been
able to obtain both Theorems 3.3 and 3.4 above with no changes in conditions by using the
Nonlinear Alternative of Leray-Schauder type.

Remark 3.6. Our results for the boundary value problem (1.1)—(1.3) remain true for the fol-
lowing cases:

e Initial value problem: c; =1, ¢; = 0 and c3 arbitrary.
e Terminal value problem: ¢; = 0, c; = 1 and c3 arbitrary.
e Anti-periodic problem: ¢; = c; # 0 and c3 = 0.

However, our results are not applicable to the periodic problem, i.e., the case c; =1, co = —1,
and c3 = 0.
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4 Examples

In this section, we will give two examples to illustrate our main results.

Example 4.1. Consider the impulsive boundary value problem for the nonlinear implicit frac-
tional differential equation
1 —VHI9 gin ¢t
Dio(t) = ¢ s : , foreachte JyU]J, 4.1)
7 (2 +1) (\f+ @(t)] + ngkco(t)D

2]@(37)]
A = , 4.2
(’o|t—2 3+|(D(%_) ( )
@(0) + () =13, (4.3)
where o= [0,Z], = (% n,m=1a=3a=0b=mc=c=1,c =13,
f(t,co,w) _ e~VHIsint /
7(2+1) (V3+ o] + |w])
and |
()
11(60) — m.

Now, for each t € [0, r] and for any @1, @2, w1, wy € R, we can show that

1
|f (t,@1,01) = f(t,@2,w2)] < 213 (|@1 — @2] + w1 — wal)
and )
|I1<(f01) - Il(CDZ)’ < 79 |(D1 —(Dz| .
Thus, for ky =k, = 3 and ¢ = 9 we have that

ky(m+1) (e —e?)”
(1—ky)T(a+1)

1" (m§+y2) — < ’C2| +1> m§+

lc1 + 2
:3[1+2 ]
2119 (1-5a)T(3)
3[1 4" —1 ]

2|97 (2163 — 1) /7
~ 0.1168003443
<1

Hence, conditions (H1)-(H3) and (3.5) are satisfied. As a consequence of Theorem 3.3, the
problem (4.1)—(4.3) has a unique solution on [0, 7t].

Example 4.2. Consider the problem

1
1 e ViH16 <2+ lo(t)] + ngkco(t)D
Dio(t) = foreach t € JoU ]y, (4.4)

i) )

179 (2 +1) <1 + | ()| +
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5lo(i7)]+1

A@|,_y = (4.5)
T2+ o)

(17(0) = —@(1), (46)

where Jo=[0,1], 1= (1, m=1La=3},a=0b=1c=c=10c3=0,

—Vt+16 (2 ]:D]
e ""D
w,w) = fo eaChtEIUl,
flta, ) 179(t2+1) (1+|w|+|w\)' g 0

and
5o +1

h@) = S0 7ar

Now, for each t € [0,1] and for any @1, @3, w1, wz € R, we can show that

1
|f (t,@1,w1) — f (£, @2, w2)| < 1794 (|@1 — @] + w1 — wal)
and , .
< —
I1(@)] < g @+ 0

Thus, for k1 =k, = 1;@ and xi = %, we have

|2 >
+1
lc1 4 o

2 —
1 178534 ]
)

e ki (m+1) (e —e?)"
(1—k)T(a+1)

#1 (mEf + M2

B

S+
4 (1= gm) I3

e

il (179¢* — 1) /7
n 4v/e —1
(179¢* — 1) /7
3753057

_3
2
_3
2
_3
8
~ 0.
< 1.

Hence, conditions (H1), (H2), (H4), and (3.8) are satisfied, so by Theorem 3.4 the problem
(4.4)—(4.6) has at least one solution on [0, 1].
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