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Abstract. Existence of solutions to the Dirichlet problem for implicit elliptic equations
is established by using Krasnoselskii-Schaefer type theorems owed to Burton—Kirk and
Gao-Li-Zhang. The nonlinearity of the equations splits into two terms: one term de-
pending on the state, its gradient and the elliptic principal part is Lipschitz continuous,
and the other one only depending on the state and its gradient has a superlinear growth
and satisfies a sign condition. Correspondingly, the associated operator is a sum of a
contraction with a completely continuous mapping. The solutions are found in a ball
of a Lebesgue space of a sufficiently large radius established by the method of a priori
bounds.
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1 Introduction

Krasnoselskii’s fixed point theorem for the sum of two operators [12] — a typical hybrid fixed
point result — has been used to prove the existence of solutions for many classes of problems
when the associated operators do not comply to a pure fixed point principle. Its hybrid
character is given by a combination of the Banach and Schauder fixed point theorems.

Theorem 1.1 (Krasnoselskii). Let D be a bounded closed convex nonempty subset of a Banach space
(X, |-]) and let A, B be two operators such that

(i) A:D — X isa contraction;
(ii) B: D — X is continuous with B(D) relatively compact;

(iii) A(x)+ B(y) € D for every x,y € D.
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2 R. Precup

Then the operator A+ B has at least one fixed point, i.e., there exists x € D such that x = A(x) + B(x).

There are many extensions of Krasnoselskii’s theorem in several directions, for single and
multi-valued mappings, self and non-self mappings, for generalized contractions and gener-
alized compact-type operators, see for example [2,5,6,10,14,18].

The strong invariance condition (iii) is required by the similar condition from Schauder’s
fixed point theorem. The last one is removed and replaced with the Leray-Schauder boundary
condition by Schaefer’s fixed point theorem [17].

Theorem 1.2 (Schaefer). Let Dr be the closed ball centered at the origin and of radius R of a Banach
space X, and let N : Dr — X be continuous with N(Dg) relatively compact. If

AN(x) # x forall x € 0Dg, A € (0,1), (1.1)
then N has at least one fixed point.

There are known hybrid theorems of Krasnoselskii type that combine Banach’s contraction
principle with Schaefer’s fixed point theorem. Such a result is owed to Burton and Kirk [6].

Theorem 1.3 (Burton-Kirk). Let Dg be the closed ball centered at the origin and of radius R of a
Banach space X, and let A, B be operators such that

(j) A: X — X is a contraction;
(j) B: Dr — X is continuous with B(Dg) relatively compact;

(Gjj) x # AA(5x) + AB(x) for all x € 0Dg and A € (0,1).

Then the operator A + B has at least one fixed point, i.e., there exists x € Dy such that x = A(x) +
B(x).

A similar result is owed to Gao, Li and Zhang [11].

Theorem 1.4 (Gao-Li-Zhang). Let Dy be the closed ball centered at the origin and of radius R of a
Banach space X, and let A, B be operators such that

(h) A: X — X isa contraction;

(hh) B: Dr — X is continuous with B(Dg) relatively compact;

(hhh) x # A(x) + AB(x) forall x € 0Dg and A € (0,1).

Then the operator A + B has at least one fixed point, i.e., there exists x € Dg such that x = A(x) +
B(x).

In proof, the difference between Theorem 1.3 and Theorem 1.4 consists in the homotopy
that is considered. In the first case, the homotopy is A(I — A)le, while in the second case, it
is (I — A)"'AB.

Obviously, if A is identically zero, then both results by Burton-Kirk and Gao-Li-Zhang
reduce to Schaefer’s theorem.
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Remark 1.5 (Method of a priori bounds). In applications, usually both operators A,B are
defined on the whole space X and a ball Dy as required by condition (jjj) of Theorem 1.3 and
(hhh) of Theorem 1.4 exists if the set of all solutions for A € (0,1) of the equations

X = AA(/l\x) + AB(x)

and
x = A(x) + AB(x),

respectively, is bounded in X.

The aim of this paper is to give an application of the previous Krasnoselskii-Schaefer
type theorems to the Dirichlet problem for implicit elliptic equations. Such equations have
been intensively studied in the literature, see for example [7,9]. Our result extends and
complements previous contributions in this direction such as those in [4,13,15,16].

We conclude the Introduction by some basic notions and results from the linear theory of
partial differential equations [3,16].

We shall work in the Sobolev space H}(Q)), where Q C R" (n > 3) is open bounded,
endowed with the energetic norm

%
uliy = 19l = (f [vu)”

Its dual space is H~!(Q) and the pairing of a functional v € H~1(Q) and a function u € H}(Q)
is denoted by (v,u). We identify L?(Q)) to its dual and thus we have H}(Q) C L*(Q)) C
H~1(Q). Then, in particular, for v € L?(Q)), one has

(v,u) = (v,u) = / uv, u€ H)(Q).
0
Recall that the operator (—A) ! is an isometry between H~!(Q2) and H}(Q), so

o] g1 = ‘(—A)_lv v e H1(Q).

17
HO

Also, the embedding H}(Q) C L¥(Q) holds and is continuous for 1 < p < 2* = 2n/(n —2),
and the same happens for the embedding L1(Q)) C H~1(Q) if g > (2*)' = 2n/(n +2). These
embeddings are compact for p < 2* and g > (2*)’, respectively.

2 Application

We discuss here the Dirichlet problem for implicit nonlinear elliptic equations,

{—Au = f(x,u,Vu,Au) + g(x,u, Vu) in Q) 2.1)

u=~0 on 0()

where () C R" is open bounded (n > 3); f : O X RXR" xR -+ Rand g: QO x RxR" - R
satisfy the Carathéodory conditions.

To give sense to the composition f(x,u, Vu, Au), we need to look for solutions u € H}(Q)
such that Au is a function. More exactly we shall require that Au € L7(Q)) for a given number
q=(27)"
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If we let v := —Au, then the equation becomes
v = f(x, (=A) 1o, V(=A) "o, —v) + g(x, (=A) 1o, V(—A)_lv).

As noted above, this equation will be solved in a Lebesgue space L7(Q)) with g4 > (2*)". We
assume in addition that g < 2, which implies L?(Q) C L1(Q)).
Let A,B: L1(Q)) — L7(Q) be given by

A(v) = f(-,(—A)*lv,V(—A)*lv,—v)
B(v) = g(.,(—A)*lv,V(—A)*lv).

Clearly we need some additional conditions on f and g to guarantee that the two operators
are well-defined from L9(Q) to itself, and then, wishing to apply Theorem 1.3 or Theorem 1.4
we have to guarantee that A is a contraction, and B is completely continuous.

We begin by a technical lemma concerning the embedding constants. By an embedding
constant for a continuous embedding X C Y of two Banach spaces (X, |-|y) and (Y, |:|y), we
mean a number ¢ > 0 such that

|x|y <c|x|y forevery x € X.

Note that if ¢ is an embedding constant for the inclusion X C Y, then c is also an embedding
constant for the dual inclusion Y’ C X'. Indeed, for any u € Y’, one has

) o MD] )

3 < csu
xex € ’x’Y xeY ’x‘Y
x#0 x#0

U]y = sup

= cluly.
xeX |x‘X v
x#0

Recall that, according to the Poincaré inequality, the best (smallest) embedding constant for the
inclusions H}(Q) C L?(Q) and L*(Q) € H™1(Q) is 1/v/A1, where A; is the first eigenvalue
of the Dirichlet problem for the operator —A.

Lemma 2.1. Let (2*)" < q < 2and let cy,cy,c3 be embedding constants for the inclusions

Hj(Q) C L1(Q), L*(Q)cC Li(Q), LIY(Q)c H Q). (2.2)
Then one may consider
2 =c1\/M, c3= 1
2=avih, 6=

Proof. From H}(Q)) C L?(Q) C L1(Q), if u € H}(Q), one has
(6]
\/7—1’”\H3/

hence ¢; = c2/+/ A1, or c2 = c14/A1. To prove the second equality, let u € Hé(Q) On the one
hand, using twice Poincaré’s inequality, we have

[ulpg < calulp2 <

1 1
Ul < \/TTMLZ S /T1|“|ng

and on the other hand,
g1 < cafufpy < crcafuly.

Hence cic3 = 1/ 4. O
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The next lemma guarantees that the operator A is a contraction.
Lemma 2.2. Assume that there exist constants a,b,c > 0 such that
f(xy,z,w) = f(x,§,2,@)] < aly —§| +blz = z[ +c|w —
forall y,y,w,w € R; z,z € R" and a.a. x € Q. Also assume that f(-,0,0,0) € L2(Q). If

b
=247 4c<n,
/\1 \/)\1

then A is a contraction on the space L1(QY) for any q € [1,2].

Proof. From the basic result about Nemytskii’s operator (see, a.e., [16]), we have that A maps
L1(Q)) to itself. Let v,w € LI(Q)). Then using the embedding constants for the inclusions (2.2)
and the relationships between them given by Lemma 2.1, we have

A@) = A)| s < a(=8) M@ —w)| +b|V(=8) (0 —w)| +clo—wly,

< acl‘(—A)_l(v —w) .

+bcz’V(—A)_1(v — w)‘L2 +clv —w|,,

= aci|v — | + ch\ (—=8) o —w)|  +clo—wly

0

= (aci1 + bea)|v — w| g +clv —w|,,
< ((acy + bez)es + c) o — wl

—<a+b+c>|v—wl O
MoV b

Furthermore, we have the following result about the complete continuity of the operator
B on the space L1(Q}).

Lemma 2.3. Assume that there exist constants ag, by > 0; a € [1,2*/(2*)"), B € [1,2/(2*)"); and
function h € L*(Q)) such that

1806, 2)| < aoly|* +bolz|’ +h(x) (2.3)

forally € R,z € R" and a.a. x € Q. Then the operator B : L1(Q)) — L1(Q)) is well-defined and

completely continuous for
2% 2
= minq —, — ». 24
q mm{ L ﬁ} (2.4)
Proof. First note that the restrictions on & and f imply that g given by (2.4) satisfies (2*)" <

q<2.
Now the operator B is the composition NP] of three operators

] L"(Q) Q) I(v)
HY(Q) — L2 (Q) x LA R), ( V(-8) o)
N: L2*(Q) x L2(O;R") — L1(Q), N(u v) = g(-,u,v).
Here | is completely continuous since the embedding L1(Q)) C H 1(Q) is compact

(g > (2*)"), and obviously, the linear operator P is bounded. Next we show that N is well-
defined, continuous and bounded (maps bounded sets into bounded sets). According to the
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basic result about Nemytskii's operator, this happens if we have a growth condition on g of
the form

|g(x, w1, wy)| < a0]w1|27 + b0]w2|% +hy(x) (w1 €R, wp € R", aa. x € Q) (2.5)

with ag, by € Ry and hy € L1(Q2). From (2.4), we have

l<a<?, 1<g<
q

N

Then the exponents &,  in (2.3) can be replaced by the larger ones 2*/q and 2/ and thus the
growth condition (2.3) implies (2.5), with a suitable function h that incorporates 4. Hence N
has the desired properties.

The above properties of the operators |, P and N imply that B is well-defined and com-
pletely continuous from L7(Q)) to itself. O

It remains to find a priori bounds of the solutions as required by Remark 1.5.

Lemma 2.4. Under the assumptions of Lemmas 2.2 and 2.3, if in addition g satisfies the sign condition

yg(x,y,z) <0 (2.6)

forally € R,z € R" and a.a. x € Q), then the sets of solutions of the equations
0= AA (iv) +AB(®) (A€ (01)) 2.7)

and of the equations

v=A(v)+AB(v) (A€ (0,1)) (2.8)

are bounded in L7(Q)).

Proof. We shall prove the statement for the family of equations (2.7). The proof is similar for
(2.8).

Step 1: We first prove the boundedness of the solutions in H~1(Q). Let v € L1(Q)) be any
solution of (2.7). Since v € H~1(Q), we may write

<v, (—A)_lv> = A <A (j\v) (—A)_lv> + A(B(v), (—A)_lv). (2.9)

2
i which is equal to |v\%{,1. Also, from (2.6) we have
0

On the left side we have ‘ (=A) o

(B(o), (—) ") = /Qg(x,(-A)*%,V(-A)*%)(-A)*lv <o.
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Next, using the Lipschitz property of f, and denoting o := |f(+,0,0,0)|,» we obtain

1 -1
<aM—A)14U+th—A) of [(=8)70| ,
1
+c [ ol (=8) o]+ 10| (=) o],
a —1_|? b 1
< (= (=
_)Ll‘( 8) H&+w//\1‘( ) H)
1 _
+e [0l (=8) o] + | () o],
a 2 b 2 / 1 1
= oo+ ——of3 —A 7 .
1ol + el +e ol (=8)7e] + —=ofol -

Since

where function s has only two values +1 giving the sign of v(—A) " 'v, we then have

s(—A) "t (=)ol = |of3 .

-1
Lol (=8)7"0] < Jol-

It follows that

1 -1 a b 2
/\(A(Av),(—A) v) < <)\1 + N -|-c> 0|51 + 4|0 g1,
where d = 79/+/A1. Thus (2.9) gives
|o[3-1 < 1[olf1 + dJo] g

which based on I < 1 implies that
[v|g1 < Gy, (2.10)

where C; = d/(1 —1) does not depend on A.
Step 2. |B(v)|,4 < C, for some constant C,. Indeed, one has

1 |* B
1B(0)],0 < aof|(=8) o]

R

+ |hp, (2.11)
L9

Furthermore, since ag < 2*, we have the continuous embedding H}(Q) C L*(Q}), and so for
some constant ¢, we have

ETT 4
o clo|pa- (2.12)
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Similarly, since g < 2, we have

[ =[vem ]l <dvi-arl, 213
=[-8y o], =l

Now (2.10)—(2.13) lead to the conclusion at Step 2.
Step 3. |v|;, < C for some constant C. Indeed, if v = |f(+,0,0,0)|,,, then one has

1
o]y < A‘A<A0>‘ +AIB(0)[pe < ol + v + |B(0)] -
La

Hence 1
olus < 27 (1B@)]10 + )
which together with the result at Step 2 gives the conclusion with C = (C, + ) /(1 —1). O

The above lemmas together with Theorem 1.3 (or alternatively, Theorem 1.4) and Re-
mark 1.5 allow us to state the following existence result.

Theorem 2.5. If f and g satisfy the conditions in Lemmas 2.2-2.4, then problem (2.1) has at least one
solution u € H}(Q) with Au € L1(Q), where ¢ = min{2* /a, 2/B}.

Remark 2.6. The sign condition (2.6) can be replaced by

yg(x,y,z) < oy’
forally € R,z € R" and a.a. x € Q, for some o < (1 —)A;.
Remark 2.7. If ¢(x,y,z) has a linear growth in y, z with constants 4y and by, and

a+a b+b
0 0

M VA

then the conclusion of Theorem 2.5 can be obtain using Krasnoselskii’s theorem, without a
sign condition on g. This happens, since in this case, it is possible to find a ball of L7(Q)) of a
sufficiently large radius such that the strong invariance condition of Krasnoselskii’s theorem
is fulfilled.

+c <1,

Finally we would like to mention that the result can be adapted to a general elliptic opera-
tor replacing the Laplacian, and the technique is possible to be used for treating other classes
of implicit differential equations.
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