Qualitative properties and global bifurcation of solutions for a singular boundary value problem

Stuart Charles A.: Qualitative properties and global bifurcation of solutions for a singular boundary value problem. (2020)

[thumbnail of ejqtde_2020_090.pdf]
Preview
Teljes mű
ejqtde_2020_090.pdf

Download (678kB) | Preview

Abstract

This paper deals with a singular, nonlinear Sturm–Liouville problem of the form {A(x)u 0 (x)} 0 + λu(x) = f(x, u(x), u 0 (x)) on (0, 1) where A is positive on (0, 1] but decays quadratically to zero as x approaches zero. This is the lowest level of degeneracy for which the problem exhibits behaviour radically different from the regular case. In this paper earlier results on the existence of bifurcation points are extended to yield global information about connected components of solutions.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2020
Number: 90
ISSN: 1417-3875
Number of Pages: 36
Language: English
DOI: 10.14232/ejqtde.2020.1.90
Uncontrolled Keywords: Differenciálegyenlet - határérték probléma, Bifurkáció
Additional Information: Bibliogr.: p. 34-36. ; összefoglalás angol nyelven
Date Deposited: 2021. Nov. 05. 15:44
Last Modified: 2021. Nov. 05. 15:44
URI: http://acta.bibl.u-szeged.hu/id/eprint/73651

Actions (login required)

View Item View Item