Barreira Luis; Valls Claudia: Nonautonomous equations and almost reducibility sets. (2021)
Előnézet |
Teljes mű
ejqtde_2021_011.pdf Letöltés (414kB) | Előnézet |
Absztrakt (kivonat)
For a nonautonomous differential equation, we consider the almost reducibility property that corresponds to the reduction of the original equation to an autonomous equation via a coordinate change preserving the Lyapunov exponents. In particular, we characterize the class of equations to which a given equation is almost reducible. The proof is based on a characterization of the almost reducibility to an autonomous equation with a diagonal coefficient matrix. We also characterize the notion of almost reducibility for an equation x 0 = A(t, θ)x depending continuously on a real parameter θ. In particular, we show that the almost reducibility set is always an Fσδ-set and for any Fσδ-set containing zero we construct a differential equation with that set as its almost reducibility set.
| Mű típusa: | Folyóirat |
|---|---|
| Folyóirat/könyv/kiadvány címe: | Electronic journal of qualitative theory of differential equations |
| Dátum: | 2021 |
| Szám: | 11 |
| ISSN: | 1417-3875 |
| Oldalszám: | 14 |
| Nyelv: | angol |
| DOI: | 10.14232/ejqtde.2021.1.11 |
| Kulcsszavak: | Differenciálegyenlet |
| Megjegyzések: | Bibliogr.: 14. p. ; összefoglalás angol nyelven |
| Feltöltés dátuma: | 2021. nov. 08. 09:44 |
| Utolsó módosítás: | 2021. nov. 08. 09:44 |
| URI: | http://acta.bibl.u-szeged.hu/id/eprint/73663 |
![]() |
Tétel nézet |

