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Abstract. We show practical solvability of the following two-dimensional systems of
difference equations

xn+1 =
un−2vn−3 + a
un−2 + vn−3

, yn+1 =
wn−2sn−3 + a
wn−2 + sn−3

, n ∈N0,

where un, vn, wn and sn are xn or yn, by presenting closed-form formulas for their
solutions in terms of parameter a, initial values, and some sequences for which there
are closed-form formulas in terms of index n. This shows that a recently introduced
class of systems of difference equations, contains a subclass such that one of the delays
in the systems is equal to four, and that they all are practically solvable, which is a bit
unexpected fact.
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1 Introduction

Solvability of difference equations is one of the basic topics studied in the area. Presenta-
tions of some results in the topic can be found in any book on the equations, for instance,
in: [4, 5, 9, 10, 12, 13]. The equations frequently appear in various applications (see, e.g.,
[4, 5, 7, 8, 11, 12, 23, 25, 41]). There has been also some recent interest in solvability (see, e.g.,
[2, 22, 28–32, 35, 37–40]). If it is not easy to find solutions to the equations, researchers try to
find their invariants, as it was the case in [15–17, 21, 26, 27, 33, 34]. In some cases they can be
used also for solving the equations and systems, as it was the case in [33, 34].

Each difference equation can be used for forming systems of difference equations pos-
sessing some types of symmetry. A way for forming such systems can be found in [28].
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Papaschinopoulos, Schinas and some of their colleagues proposed studying some systems of
this and other types (see, e.g., [6, 14–21, 26, 27]). We have devoted a part of our research to
solvable systems of difference equations, unifying the two topics (see, e.g., [2,28–32,35,38–40]).

During the last several years, we have studied, among other things, practical solvability of
product-type systems of difference equations. For some of our previous results in the topic
see, for instance, [29,30], as well as the related references therein. The systems are theoretically
solvable, but only several subclasses are practically solvable, which has been one of the main
reasons for our study of the systems.

Quite recently, we have started studying solvability of the, so called, hyperbolic-cotangent-
type systems of difference equations. They are given by

xn+1 =
un−kvn−l + a
un−k + vn−l

, yn+1 =
wn−ksn−l + a
wn−k + sn−l

, n ∈N0, (1.1)

where delays k and l are nonnegative integers, parameter a and initial values are complex
numbers, whereas each of the four sequences un, vn, wn and sn is one of the sequences xn or
yn for all possible values of index n.

Note that this is a class of nonlinear systems of difference equations which is formed by
using the method for forming symmetric types of systems of difference equations described
in [28]. For the case of one-dimensional difference equation corresponding to the systems in
(1.1) see [24] and [37].

What is interesting is that the systems in (1.1) are connected to product-type ones. As we
have mentioned the product-type systems are theoretically solvable, but only few of them are
practically solvable. The reason for this lies in impossibility to solve all polynomial equations,
as well as the fact that with each product-type system of difference equations is associated a
polynomial. The mentioned connection between the systems in (1.1) and product-type ones
implies that also only several subclasses of the systems in (1.1) are practically solvable. More-
over, the connection shows that for guaranteeing practical solvability of all the systems in (1.1)
values of k and l seems should be small. Note that we may assume k ≤ l. The case k = 0
and l = 1 was studied in [39] and [40], whereas in [32] was presented another solution to
the problem. The case k = 1 and l = 2 was studied in [31], whereas the case k = 0 and
l = 2 was studied in [35], which finished the study of practical solvability in the case when
max{k, l} ≤ 2 and k 6= l. The case k = l ∈N0 was solved in [36].

Thus, it is of some interest to see if all the systems in (1.1) are solvable when l = 3 and k is
such that 0 ≤ k ≤ 2.

One of the cases is obvious. Namely, if k = 1, then the systems in (1.1) are with interlacing
indices (the notion and some examples can be found in [38]), since each of the systems in (1.1)
in this case, reduces to two systems of the exactly same form with k = 0 and l = 1. Thus, it is
of some interest to study the other cases.

Here, we show that the systems of difference equations

xn+1 =
un−2vn−3 + a
un−2 + vn−3

, yn+1 =
wn−2sn−3 + a
wn−2 + sn−3

, n ∈N0, (1.2)

are practically solvable, that is, we show the solvability of all sixteen systems in (1.1), in
the case k = 2 and l = 3, which is a bit surprising result. Namely, as we have said, to
each system in (1.2) is associated a polynomial, several of which have degree bigger than
four (some of them have degree eight). By a well-known theorem of Abel [1], polynomials
of degree bigger than four need not be solvable by radicals. However, it turns out that all
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the associate polynomials to the systems in (1.2) are solvable by radicals, implying practical
solvability of the corresponding systems. Using the fact that there is no universal method for
showing practical solvability of such systems, as well as the fact that the situation in the case
max{k, l} ≥ 5 is different, shows the importance of studying solvability of the systems in (1.2).

The case a = 0 was considered in [32] where it was shown its theoretical solvability.
Namely, by using the changes of variables

xn =
1
x̂n

, yn =
1
ŷn

,

system (1.2) becomes linear, from which together with a known theorem from the theory of
homogeneous linear difference equations with constant coefficients the theoretical solvability
of the system follows. Hence, from now on we will consider only the case a 6= 0.

2 Connection of (1.2) to product-type systems and a lemma

First, we present above mentioned connection of the systems in (1.2) to some product-type
systems.

Some simple calculations yield

xn+1 ±
√

a =
(un−2 ±

√
a)(vn−3 ±

√
a)

un−2 + vn−3
and yn+1 ±

√
a =

(wn−2 ±
√

a)(sn−3 ±
√

a)
wn−2 + sn−3

,

for n ∈N0, implying

xn+1 +
√

a
xn+1 −

√
a
=

un−2 +
√

a
un−2 −

√
a
· vn−3 +

√
a

vn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

wn−2 +
√

a
wn−2 −

√
a
· sn−3 +

√
a

sn−3 −
√

a
, (2.1)

for n ∈N0.
System (2.1) written in a compact form, can be written as follows

xn+1 +
√

a
xn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
, (2.2)

xn+1 +
√

a
xn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
, (2.3)

xn+1 +
√

a
xn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
, (2.4)

xn+1 +
√

a
xn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
, (2.5)

xn+1 +
√

a
xn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
, (2.6)
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xn+1 +
√

a
xn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
, (2.7)

xn+1 +
√

a
xn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
, (2.8)

xn+1 +
√

a
xn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
, (2.9)

xn+1 +
√

a
xn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
, (2.10)

xn+1 +
√

a
xn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
, (2.11)

xn+1 +
√

a
xn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
, (2.12)

xn+1 +
√

a
xn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
, (2.13)

xn+1 +
√

a
xn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
, (2.14)

xn+1 +
√

a
xn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· xn−3 +

√
a

xn−3 −
√

a
, (2.15)

xn+1 +
√

a
xn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

xn−2 +
√

a
xn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
, (2.16)

xn+1 +
√

a
xn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a
yn+1 −

√
a
=

yn−2 +
√

a
yn−2 −

√
a
· yn−3 +

√
a

yn−3 −
√

a
, (2.17)

for n ∈N0.
Let

ζn =
xn +

√
a

xn −
√

a
and ηn =

yn +
√

a
yn −

√
a

,

then

xn =
√

a
ζn + 1
ζn − 1

and yn =
√

a
ηn + 1
ηn − 1

, (2.18)
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so (2.2)–(2.17) become

ζn+1 = ζn−2ζn−3, ηn+1 = ζn−2ζn−3, (2.19)

ζn+1 = ζn−2ζn−3, ηn+1 = ηn−2ζn−3, (2.20)

ζn+1 = ζn−2ζn−3, ηn+1 = ζn−2ηn−3, (2.21)

ζn+1 = ζn−2ζn−3, ηn+1 = ηn−2ηn−3, (2.22)

ζn+1 = ηn−2ζn−3, ηn+1 = ζn−2ζn−3, (2.23)

ζn+1 = ηn−2ζn−3, ηn+1 = ηn−2ζn−3, (2.24)

ζn+1 = ηn−2ζn−3, ηn+1 = ζn−2ηn−3, (2.25)

ζn+1 = ηn−2ζn−3, ηn+1 = ηn−2ηn−3, (2.26)

ζn+1 = ζn−2ηn−3, ηn+1 = ζn−2ζn−3, (2.27)

ζn+1 = ζn−2ηn−3, ηn+1 = ηn−2ζn−3, (2.28)

ζn+1 = ζn−2ηn−3, ηn+1 = ζn−2ηn−3, (2.29)

ζn+1 = ζn−2ηn−3, ηn+1 = ηn−2ηn−3, (2.30)

ζn+1 = ηn−2ηn−3, ηn+1 = ζn−2ζn−3, (2.31)

ζn+1 = ηn−2ηn−3, ηn+1 = ηn−2ζn−3, (2.32)

ζn+1 = ηn−2ηn−3, ηn+1 = ζn−2ηn−3, (2.33)

ζn+1 = ηn−2ηn−3, ηn+1 = ηn−2ηn−3, (2.34)

for n ∈N0.
So, if systems (2.19)–(2.34) are practically solvable, then by using (2.18) the systems (2.2)–

(2.17) will be also such. Hence, it should be first proved practical solvability of systems
(2.19)–(2.34).

The following auxiliary result is used for several times in the rest of the article. The proof
is omitted since it can be found, for example, in [31].

Lemma 2.1. Assume Rk(s) = sk − bk−1sk−1− bk−2sk−2− · · · − b0, b0 6= 0, is a real polynomial with
simple roots si, i = 1, k, and an, n ≥ l − k, is defined by

an = bk−1an−1 + bk−2an−2 + · · ·+ b0an−k, n ≥ l,

with aj−k = 0, j = l, l + k− 2, al−1 = 1, and l ∈ Z. Then

an =
k

∑
i=1

sn+k−l
i

R′k(si)
, n ≥ l − k.

3 Main results

Here we show that each of the product-type systems of difference equations in (2.19)–(2.34) is
practically solvable, and following the analysis of each of the systems, by using the relations
in (2.18), we present closed-form formulas for general solutions to systems (2.2)–(2.17).

3.1 System (2.19)

The equations in (2.19) immediately imply the following relation

ζn = ηn, n ∈N. (3.1)
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The first equation in (2.19) can be written as follows

ζn = ζn−3ζn−4 = ζc1
n−3ζd1

n−4ζe1
n−5ζ

f1
n−6, (3.2)

for n ∈N, where, of course, the exponents are defined as follows

c1 = d1 = 1, e1 = f1 = 0. (3.3)

An application of the first equality in (3.2) into the second one yields

ζn = (ζn−6ζn−7)
c1 ζd1

n−4ζe1
n−5ζ

f1
n−6 = ζd1

n−4ζe1
n−5ζ

c1+ f1
n−6 ζc1

n−7 = ζc2
n−4ζd2

n−5ζe2
n−6ζ

f2
n−7,

for n ≥ 4, where c2 := d1, d2 := e1, e2 := c1 + f1 and f2 := c1.
It is natural to assume that the following relations hold

ζn = ζck
n−k−2ζdk

n−k−3ζek
n−k−4ζ

fk
n−k−5, (3.4)

ck = dk−1, dk = ek−1, ek = ck−1 + fk−1, fk = ck−1 (3.5)

for a k ≥ 2 and n ≥ k + 2.
Relations (3.2), (3.4) and (3.5) yield

ζn = (ζn−k−5ζn−k−6)
ck ζdk

n−k−3ζek
n−k−4ζ

fk
n−k−5,

= ζdk
n−k−3ζek

n−k−4ζ
ck+ fk
n−k−5ζck

n−k−6

= ζ
ck+1
n−k−3ζ

dk+1
n−k−4ζ

ek+1
n−k−5ζ

fk+1
n−k−6,

where
ck+1 := dk, dk+1 := ek, ek+1 := ck + fk. fk+1 := ck.

The inductive argument proves that (3.4) and (3.5) really hold for 2 ≤ k ≤ n− 2.
It is easy to see that from (3.3) and (3.5), we get

cn = cn−3 + cn−4, (3.6)

for n ≥ 5 (in fact, for n ∈ Z), and

c0 = c−1 = 0, c−2 = 1, c−3 = c−4 = c−5 = 0, c−6 = 1, c−7 = −1. (3.7)

Choose k = n− 2 in relation (3.4). Then (3.5) and (3.6) yield

ζn = ζ
cn−2
0 ζ

dn−2
−1 ζ

en−2
−2 ζ

fn−2
−3 = ζ

cn−2
0 ζ

cn−1
−1 ζcn

−2ζ
cn−3
−3 , (3.8)

for n ∈N. A simple verification shows that (3.8) holds also for n ≥ −3.
Thus, (3.1) and (3.8) imply

ηn = ζ
cn−2
0 ζ

cn−1
−1 ζcn

−2ζ
cn−3
−3 , n ∈N. (3.9)

Let

P4(λ) = λ4 − λ− 1 = 0. (3.10)
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It is the characteristic polynomial associated with (3.6). Its roots λj, j = 1, 4, are simple and
can be found by radicals [3].

Lemma 2.1 shows that the solution to (3.6) satisfying the initial conditions c−5 = c−4 =

c−3 = 0, c−2 = 1, is given by

cn =
4

∑
j=1

λn+5
j

P′4(λj)
, n ∈ Z. (3.11)

The following theorem follows from (2.18), (3.8) and (3.9).

Theorem 3.1. If a 6= 0, then the general solution to (2.2) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
+ 1(

x0+
√

a
x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
− 1

, n ≥ −3,

yn =
√

a

(
x0+
√

a
x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
+ 1(

x0+
√

a
x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
− 1

, n ∈N,

where cn is given by (3.11).

3.2 System (2.20)

Since the first equation in (2.20) is the same as in (2.19), formula (3.8) must hold. Further, we
have ηn = ηn−3ζn−4, n ∈N, or equivalently

η3n+i = η3(n−1)+iζ3(n−1)+i−1, n ∈N, (3.12)

for i = −2,−1, 0, and n ∈N.
Relations (3.8) and (3.12), for i = −2, yield

η3n−2 = η−2

n

∏
j=1

ζ3j−6

= η−2

n

∏
j=1

ζ
c3j−8
0 ζ

c3j−7
−1 ζ

c3j−6
−2 ζ

c3j−9
−3

= η−2ζ
∑n

j=1 c3j−8

0 ζ
∑n

j=1 c3j−7

−1 ζ
∑n

j=1 c3j−6

−2 ζ
∑n

j=1 c3j−9

−3 , (3.13)

for n ∈N0.
From (3.8) and (3.12), for i = −1, we obtain

η3n−1 = η−1

n

∏
j=1

ζ3j−5

= η−1

n

∏
j=1

ζ
c3j−7
0 ζ

c3j−6
−1 ζ

c3j−5
−2 ζ

c3j−8
−3

= η−1ζ
∑n

j=1 c3j−7

0 ζ
∑n

j=1 c3j−6

−1 ζ
∑n

j=1 c3j−5

−2 ζ
∑n

j=1 c3j−8

−3 , (3.14)

for n ∈N0.
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From (3.8) and (3.12), for i = 0, it follows that

η3n = η0

n

∏
j=1

ζ3j−4

= η0

n

∏
j=1

ζ
c3j−6
0 ζ

c3j−5
−1 ζ

c3j−4
−2 ζ

c3j−7
−3

= η0ζ
∑n

j=1 c3j−6

0 ζ
∑n

j=1 c3j−5

−1 ζ
∑n

j=1 c3j−4

−2 ζ
∑n

j=1 c3j−7

−3 , (3.15)

for n ∈N0.
From (3.6) and (3.7), we have

n

∑
j=1

c3j−9 =
n

∑
j=1

(c3j−5 − c3j−8) = c3n−5, (3.16)

n

∑
j=1

c3j−8 =
n

∑
j=1

(c3j−4 − c3j−7) = c3n−4, (3.17)

n

∑
j=1

c3j−7 =
n

∑
j=1

(c3j−3 − c3j−6) = c3n−3 (3.18)

n

∑
j=1

c3j−6 =
n

∑
j=1

(c3j−2 − c3j−5) = c3n−2 − 1, (3.19)

n

∑
j=1

c3j−5 =
n

∑
j=1

(c3j−1 − c3j−4) = c3n−1, (3.20)

n

∑
j=1

c3j−4 =
n

∑
j=1

(c3j − c3j−3) = c3n, (3.21)

for n ∈N0.
From (3.13)–(3.21), we have

η3n−2 = η−2ζ
c3n−4
0 ζ

c3n−3
−1 ζ

c3n−2−1
−2 ζ

c3n−5
−3 , (3.22)

η3n−1 = η−1ζ
c3n−3
0 ζ

c3n−2−1
−1 ζ

c3n−1
−2 ζ

c3n−4
−3 , (3.23)

η3n = η0ζ
c3n−2−1
0 ζ

c3n−1
−1 ζc3n

−2ζ
c3n−3
−3 , (3.24)

for n ∈N0.
The following theorem follows from (2.18), (3.8), (3.22), (3.23) and (3.24).

Theorem 3.2. If a 6= 0, then the general solution to (2.3) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
+ 1(

x0+
√

a
x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
− 1

, n ≥ −3,

y3n−2 =
√

a

(
y−2+

√
a

y−2−
√

a

) (
x0+
√

a
x0−
√

a

)c3n−4
(

x−1+
√

a
x−1−

√
a

)c3n−3
(

x−2+
√

a
x−2−

√
a

)c3n−2−1 ( x−3+
√

a
x−3−

√
a

)c3n−5
+ 1(

y−2+
√

a
y−2−

√
a

) (
x0+
√

a
x0−
√

a

)c3n−4
(

x−1+
√

a
x−1−

√
a

)c3n−3
(

x−2+
√

a
x−2−

√
a

)c3n−2−1 ( x−3+
√

a
x−3−

√
a

)c3n−5
− 1

y3n−1 =
√

a

(
y−1+

√
a

y−1−
√

a

) (
x0+
√

a
x0−
√

a

)c3n−3
(

x−1+
√

a
x−1−

√
a

)c3n−2−1 ( x−2+
√

a
x−2−

√
a

)c3n−1
(

x−3+
√

a
x−3−

√
a

)c3n−4
+ 1(

y−1+
√

a
y−1−

√
a

) (
x0+
√

a
x0−
√

a

)c3n−3
(

x−1+
√

a
x−1−

√
a

)c3n−2−1 ( x−2+
√

a
x−2−

√
a

)c3n−1
(

x−3+
√

a
x−3−

√
a

)c3n−4
− 1
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y3n =
√

a

(
y0+
√

a
y0−
√

a

) (
x0+
√

a
x0−
√

a

)c3n−2−1 ( x−1+
√

a
x−1−

√
a

)c3n−1
(

x−2+
√

a
x−2−

√
a

)c3n
(

x−3+
√

a
x−3−

√
a

)c3n−3
+ 1(

y0+
√

a
y0−
√

a

) (
x0+
√

a
x0−
√

a

)c3n−2−1 ( x−1+
√

a
x−1−

√
a

)c3n−1
(

x−2+
√

a
x−2−

√
a

)c3n
(

x−3+
√

a
x−3−

√
a

)c3n−3
− 1

,

for n ∈N0, where cn is given by (3.11).

3.3 System (2.21)

Since the first equation in (2.21) is the same as in (2.19), formula (3.8) must hold. Further, we
have ηn = ζn−3ηn−4, for n ∈N, or equivalently

η4n+i = ζ4n−3+iη4(n−1)+i, (3.25)

for n ∈N, i = −3,−2,−1, 0.
From (3.8) and (3.25), we have

η4n−3 = η−3

n

∏
j=1

ζ4j−6

= η−3

n

∏
j=1

ζ
c4j−8
0 ζ

c4j−7
−1 ζ

c4j−6
−2 ζ

c4j−9
−3

= η−3ζ
∑n

j=1 c4j−8

0 ζ
∑n

j=1 c4j−7

−1 ζ
∑n

j=1 c4j−6

−2 ζ
∑n

j=1 c4j−9

−3 , (3.26)

for n ∈N0,

η4n−2 = η−2

n

∏
j=1

ζ4j−5

= η−2

n

∏
j=1

ζ
c4j−7
0 ζ

c4j−6
−1 ζ

c4j−5
−2 ζ

c4j−8
−3

= η−2ζ
∑n

j=1 c4j−7

0 ζ
∑n

j=1 c4j−6

−1 ζ
∑n

j=1 c4j−5

−2 ζ
∑n

j=1 c4j−8

−3 , (3.27)

for n ∈N0, and

η4n−1 = η−1

n

∏
j=1

ζ4j−4

= η−1

n

∏
j=1

ζ
c4j−6
0 ζ

c4j−5
−1 ζ

c4j−4
−2 ζ

c4j−7
−3

= η−1ζ
∑n

j=1 c4j−6

0 ζ
∑n

j=1 c4j−5

−1 ζ
∑n

j=1 c4j−4

−2 ζ
∑n

j=1 c4j−7

−3 , (3.28)

for n ∈N0,

η4n = η0

n

∏
j=1

ζ4j−3

= η0

n

∏
j=1

ζ
c4j−5
0 ζ

c4j−4
−1 ζ

c4j−3
−2 ζ

c4j−6
−3

= η0ζ
∑n

j=1 c4j−5

0 ζ
∑n

j=1 c4j−4

−1 ζ
∑n

j=1 c4j−3

−2 ζ
∑n

j=1 c4j−6

−3 , (3.29)

for n ∈N0.
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Relations (3.6) and (3.7) yield

n

∑
j=1

c4j−9 =
n

∑
j=1

(c4j−6 − c4j−10) = c4n−6 − 1, (3.30)

n

∑
j=1

c4j−8 =
n

∑
j=1

(c4j−5 − c4j−9) = c4n−5, (3.31)

n

∑
j=1

c4j−7 =
n

∑
j=1

(c4j−4 − c4j−8) = c4n−4, (3.32)

n

∑
j=1

c4j−6 =
n

∑
j=1

(c4j−3 − c4j−7) = c4n−3, (3.33)

n

∑
j=1

c4j−5 =
n

∑
j=1

(c4j−2 − c4j−6) = c4n−2 − 1, (3.34)

n

∑
j=1

c4j−4 =
n

∑
j=1

(c4j−1 − c4j−5) = c4n−1, (3.35)

n

∑
j=1

c4j−3 =
n

∑
j=1

(c4j − c4j−4) = c4n, (3.36)

for n ∈N.
From (3.26)–(3.36), we have

η4n−3 = η−3ζ
c4n−5
0 ζ

c4n−4
−1 ζ

c4n−3
−2 ζ

c4n−6−1
−3 , (3.37)

η4n−2 = η−2ζ
c4n−4
0 ζ

c4n−3
−1 ζ

c4n−2−1
−2 ζ

c4n−5
−3 , (3.38)

η4n−1 = η−1ζ
c4n−3
0 ζ

c4n−2−1
−1 ζ

c4n−1
−2 ζ

c4n−4
−3 , (3.39)

η4n = η0ζ
c4n−2−1
0 ζ

c4n−1
−1 ζc4n

−2ζ
c4n−3
−3 , (3.40)

for n ∈N0.
The following theorem follows from (2.18), (3.8), (3.37)–(3.40).

Theorem 3.3. If a 6= 0, then the general solution to (2.4) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
+ 1(

x0+
√

a
x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
− 1

, n ≥ −3,

y4n−3 =
√

a

(
y−3+

√
a

y−3−
√

a

) (
x0+
√

a
x0−
√

a

)c4n−5
(

x−1+
√

a
x−1−

√
a

)c4n−4
(

x−2+
√

a
x−2−

√
a

)c4n−3
(

x−3+
√

a
x−3−

√
a

)c4n−6−1
+ 1(

y−3+
√

a
y−3−

√
a

) (
x0+
√

a
x0−
√

a

)c4n−5
(

x−1+
√

a
x−1−

√
a

)c4n−4
(

x−2+
√

a
x−2−

√
a

)c4n−3
(

x−3+
√

a
x−3−

√
a

)c4n−6−1
− 1

,

y4n−2 =
√

a

(
y−2+

√
a

y−2−
√

a

) (
x0+
√

a
x0−
√

a

)c4n−4
(

x−1+
√

a
x−1−

√
a

)c4n−3
(

x−2+
√

a
x−2−

√
a

)c4n−2−1 ( x−3+
√

a
x−3−

√
a

)c4n−5
+ 1(

y−2+
√

a
y−2−

√
a

) (
x0+
√

a
x0−
√

a

)c4n−4
(

x−1+
√

a
x−1−

√
a

)c4n−3
(

x−2+
√

a
x−2−

√
a

)c4n−2−1 ( x−3+
√

a
x−3−

√
a

)c4n−5
− 1

,

y4n−1 =
√

a

(
y−1+

√
a

y−1−
√

a

) (
x0+
√

a
x0−
√

a

)c4n−3
(

x−1+
√

a
x−1−

√
a

)c4n−2−1 ( x−2+
√

a
x−2−

√
a

)c4n−1
(

x−3+
√

a
x−3−

√
a

)c4n−4
+ 1(

y−1+
√

a
y−1−

√
a

) (
x0+
√

a
x0−
√

a

)c4n−3
(

x−1+
√

a
x−1−

√
a

)c4n−2−1 ( x−2+
√

a
x−2−

√
a

)c4n−1
(

x−3+
√

a
x−3−

√
a

)c4n−4
− 1

,
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y4n =
√

a

(
y0+
√

a
y0−
√

a

) (
x0+
√

a
x0−
√

a

)c4n−2−1 ( x−1+
√

a
x−1−

√
a

)c4n−1
(

x−2+
√

a
x−2−

√
a

)c4n
(

x−3+
√

a
x−3−

√
a

)c4n−3
+ 1(

y0+
√

a
y0−
√

a

) (
x0+
√

a
x0−
√

a

)c4n−2−1 ( x−1+
√

a
x−1−

√
a

)c4n−1
(

x−2+
√

a
x−2−

√
a

)c4n
(

x−3+
√

a
x−3−

√
a

)c4n−3
− 1

,

for n ∈N0, where sequence cn is given by (3.11).

3.4 System (2.22)

Since the first equation in (2.22) is the same as in (2.19), formula (3.8) must hold, as well as
the following one

ηn = η
cn−2
0 η

cn−1
−1 ηcn

−2η
cn−3
−3 , n ≥ −3. (3.41)

The following theorem follows from (2.18), (3.8) and (3.41).

Theorem 3.4. If a 6= 0, then the general solution to (2.5) is

xn =
√

a

(
x0+
√

a
x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
+ 1(

x0+
√

a
x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
− 1

,

yn =
√

a

(
y0+
√

a
y0−
√

a

)cn−2
(

y−1+
√

a
y−1−

√
a

)cn−1
(

y−2+
√

a
y−2−

√
a

)cn
(

y−3+
√

a
y−3−

√
a

)cn−3
+ 1(

y0+
√

a
y0−
√

a

)cn−2
(

y−1+
√

a
y−1−

√
a

)cn−1
(

y−2+
√

a
y−2−

√
a

)cn
(

y−3+
√

a
y−3−

√
a

)cn−3
− 1

,

for n ≥ −3, where cn is given by (3.11).

3.5 System (2.23)

The equations in (2.23) yield the relation

ζn = ζn−4ζn−6ζn−7, n ≥ 4. (3.42)

We can write (3.42) as follows

ζn = ζa1
n−4ζb1

n−5ζc1
n−6ζd1

n−7ζe1
n−8ζ

f1
n−9ζ

g1
n−10, n ≥ 4, (3.43)

where, of course, the exponents are defined as follows

a1 = 1, b1 = 0, c1 = d1 = 1, e1 = f1 = g1 = 0. (3.44)

From (3.42) and (3.43), we have

ζn = (ζn−8ζn−10ζn−11)
a1 ζb1

n−5ζc1
n−6ζd1

n−7ζe1
n−8ζ

f1
n−9ζ

g1
n−10

= ζb1
n−5ζc1

n−6ζd1
n−7ζa1+e1

n−8 ζ
f1
n−9ζ

a1+g1
n−10 ζa1

n−11

= ζa2
n−5ζb2

n−6ζc2
n−7ζd2

n−8ζe2
n−9ζ

f2
n−10ζ

g2
n−11,

for n ≥ 8, where a2 := b1, b2 := c1, c2 := d1, d2 := a1 + e1, e2 := f1, f2 := a1 + g1 and g2 := a1.
It is natural to suppose that the following relations hold

ζn = ζak
n−k−3ζbk

n−k−4ζck
n−k−5ζdk

n−k−6ζek
n−k−7ζ

fk
n−k−8ζ

gk
n−k−9, (3.45)
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ak = bk−1, bk = ck−1, ck = dk−1, dk = ak−1 + ek−1,

ek = fk−1, fk = ak−1 + gk−1, gk = ak−1,
(3.46)

for a k ≥ 2 and n ≥ k + 6.
From (3.42) and (3.45), we have

ζn = ζak
n−k−3ζbk

n−k−4ζck
n−k−5ζdk

n−k−6ζek
n−k−7ζ

fk
n−k−8ζ

gk
n−k−9

= (ζn−k−7ζn−k−9ζn−k−10)
ak ζbk

n−k−4ζck
n−k−5ζdk

n−k−6ζek
n−k−7ζ

fk
n−k−8ζ

gk
n−k−9

= ζbk
n−k−4ζck

n−k−5ζdk
n−k−6ζak+ek

n−k−7ζ
fk
n−k−8ζ

ak+gk
n−k−9ζak

n−k−10

= ζ
ak+1
n−k−4ζ

bk+1
n−k−5ζ

ck+1
n−k−6ζ

dk+1
n−k−7ζ

ek+1
n−k−8ζ

fk+1
n−k−9ζ

gk+1
n−k−10,

where

ak+1 := bk, bk+1 := ck, ck+1 := dk, dk+1 := ak + ek,

ek+1 := fk, fk+1 := ak + gk, gk+1 := ak,

for a k ≥ 2 and n ≥ k + 7. Thus, (3.45) and (3.46) are true for 2 ≤ k ≤ n− 6.
Relations (3.44) and (3.46) yield

an = an−4 + an−6 + an−7, (3.47)

for n ≥ 8 (in fact, for n ∈ Z), and

a0 = a−1 = a−2 = 0, a−3 = 1, a−j = 0, j = 4, 9, a−10 = 1, a−11 = −1.

By choosing k = n− 6 in (3.45), we get

ζn = ζ
an−6
3 ζ

bn−6
2 ζ

cn−6
1 ζ

dn−6
0 ζ

en−6
−1 ζ

fn−e
−2 ζ

gn−6
−3

= (η0ζ−1)
an−6(η−1ζ−2)

bn−6(η−2ζ−3)
cn−6 ζ

dn−6
0 ζ

en−6
−1 ζ

fn−e
−2 ζ

gn−6
−3

= ζ
dn−6
0 ζ

an−6+en−6
−1 ζ

bn−6+ fn−6
−2 ζ

cn−6+gn−6
−3 η

an−6
0 η

bn−6
−1 η

cn−6
−2

= ζ
an−3
0 ζ

an−2
−1 ζ

an−1
−2 ζ

an−4+an−7
−3 η

an−6
0 η

an−5
−1 η

an−4
−2 , (3.48)

for n ≥ −3.
Relations (2.23) and (3.48) yield

ηn = ζn−3ζn−4

= ζ
an−6+an−7
0 ζ

an−5+an−6
−1 ζ

an−4+an−5
−2 ζ

an−4+an−7
−3 η

an−9+an−10
0 η

an−8+an−9
−1 η

an−7+an−8
−2 , (3.49)

for n ∈N. A direct check shows that (3.49) also holds for n = 0.
Let

P7(λ) = λ7 − λ3 − λ− 1 = (λ3 + 1)(λ4 − λ− 1).

Clearly it is the characteristic polynomial of (3.47). Four roots of P7 are those of (3.10), while

λ4+j = ei π(2j+1)
3 , j = 0, 2. The roots are distinct. Lemma 2.1 shows that

an =
7

∑
j=1

λn+9
j

P′7(λj)
, n ∈ Z, (3.50)

is the solution to (3.47) satisfying the initial conditions a−j = 0, j = 4, 9 = 0, a−3 = 1.
The following theorem follows from (2.18), (3.48) and (3.49).
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Theorem 3.5. If a 6= 0, then the general solution to (2.6) is

xn =
√

a
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)an+j−3 ( x−3+
√

a
x−3−

√
a

)an−4+an−7
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)an+j−6
+ 1

∏2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−3 ( x−3+
√

a
x−3−

√
a

)an−4+an−7
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)an+j−6
− 1

,

for n ≥ −3, and

yn =
√

a
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−6 ( x−3+
√

a
x−3−

√
a

)an−4+an−7
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−9
+ 1

∏2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−6 ( x−3+
√

a
x−3−

√
a

)an−4+an−7
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−9
− 1

,

for n ∈N0, where an is given by (3.50) and bn = an + an−1.

3.6 System (2.24)

From the equations in (2.24) we have ζn = ηn, n ∈N. This together with (2.24), implies

ζn+1 = ζn−2ζn−3, n ≥ 3.

If we use (3.8), we get

ζn = ζ
cn−6
4 ζ

cn−5
3 ζ

cn−4
2 ζ

cn−7
1

= (η−2ζ0ζ−3)
cn−6(η0ζ−1)

cn−5(η−1ζ−2)
cn−4(η−2ζ−3)

cn−7

= ζ
cn−6
0 ζ

cn−5
−1 ζ

cn−4
−2 ζ

cn−3
−3 η

cn−5
0 η

cn−4
−1 η

cn−3
−2 , (3.51)

for n ∈N0, where cn is given by (3.11).
Therefore

ηn = ζ
cn−6
0 ζ

cn−5
−1 ζ

cn−4
−2 ζ

cn−3
−3 η

cn−5
0 η

cn−4
−1 η

cn−3
−2 , n ∈N. (3.52)

The following theorem follows from (2.18), (3.51) and (3.52).

Theorem 3.6. If a 6= 0, then the general solution to (2.7) is

xn =
√

a
∏3

j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−6

∏2
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−5
+ 1

∏3
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−6

∏2
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−5
− 1

,

for n ∈N0, and

yn =
√

a
∏3

j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−6

∏2
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−5
+ 1

∏3
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−6

∏2
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−5
− 1

,

for n ∈N, where cn is given by (3.11).
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3.7 System (2.25)

It is not difficult to see that in the case of the system the following relation holds

ζn = ζ2
n−4ζn−6ζ−1

n−8, n ≥ 5. (3.53)

Let
ζ
(i)
n = ζ2n+i, n ≥ −1,

for i = −1, 0, then we have

ζ
(i)
n = (ζ

(i)
n−2)

2ζ
(i)
n−3(ζ

(i)
n−4)

−1, n ≥ 3. (3.54)

Let further

b1 = 2, c1 = 1, d1 = −1, e1 = 0. (3.55)

Then, we have

ζ
(i)
n = (ζ

(i)
n−2)

b1(ζ
(i)
n−3)

c1(ζ
(i)
n−4)

d1(ζ
(i)
n−5)

e1

= ((ζ
(i)
n−4)

2ζ
(i)
n−5(ζ

(i)
n−6)

−1)b1(ζ
(i)
n−3)

c1(ζ
(i)
n−4)

d1(ζ
(i)
n−5)

e1

= (ζ
(i)
n−3)

c1(ζ
(i)
n−4)

2b1+d1(ζ
(i)
n−5)

b1+e1(ζ
(i)
n−6)

−b1

= (ζ
(i)
n−3)

b2(ζ
(i)
n−4)

c2(ζ
(i)
n−5)

d2(ζ
(i)
n−6)

e2 ,

for n ≥ 5, where b2 := c1, c2 := 2b1 + d1, d2 := b1 + e1 and e2 := −b1.
It is natural to assume that

ζ
(i)
n = (ζ

(i)
n−k−1)

bk(ζ
(i)
n−k−2)

ck(ζ
(i)
n−k−3)

dk(ζ
(i)
n−k−4)

ek , (3.56)

for a k ≥ 2 and n ≥ k + 3, and

bk = ck−1, ck = 2bk−1 + dk−1, dk = bk−1 + ek−1, ek = −bk−1. (3.57)

From (3.54) and (3.56), we have

ζ
(i)
n = (ζ

(i)
n−k−1)

bk(ζ
(i)
n−k−2)

ck(ζ
(i)
n−k−3)

dk(ζ
(i)
n−k−4)

ek

= ((ζ
(i)
n−k−3)

2ζ
(i)
n−k−4(ζ

(i)
n−k−5)

−1)bk(ζ
(i)
n−k−2)

ck(ζ
(i)
n−k−3)

dk(ζ
(i)
n−k−4)

ek

= (ζ
(i)
n−k−2)

ck(ζ
(i)
n−k−3)

2bk+dk(ζ
(i)
n−k−4)

bk+ek(ζ
(i)
n−k−5)

−bk

= (ζ
(i)
n−k−2)

bk+1(ζ
(i)
n−k−3)

ck+1(ζ
(i)
n−k−4)

dk+1(ζ
(i)
n−k−5)

ek+1 ,

for n ≥ k + 4, where

bk+1 := ck, ck+1 := 2bk + dk, dk+1 := bk + ek, ek+1 := −bk.

So, the method of induction shows that (3.56) and (3.57) hold for 2 ≤ k ≤ n− 3.
From (3.55) and (3.57) we get

bn = 2bn−2 + bn−3 − bn−4, (3.58)

for n ≥ 5 (in fact, for n ∈ Z), and

b0 = 0, b−1 = 1, b−j = 0, j = 2, 4, b−5 = −1.
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If we choose k = n− 3 in (3.56), we get

ζ
(i)
n = (ζ

(i)
2 )bn−3(ζ

(i)
1 )cn−3(ζ

(i)
0 )dn−3(ζ

(i)
−1)

en−3

= (ζ
(i)
2 )bn−3(ζ

(i)
1 )bn−2(ζ

(i)
0 )bn−1−2bn−3(ζ

(i)
−1)
−bn−4 ,

for n ≥ −1, and i = −1, 0.
If i = 0, we obtain

ζ2n = ζ
bn−3
4 ζ

bn−2
2 ζ

bn−1−2bn−3
0 ζ

−bn−4
−2

= (ζ0ζ−2η−3)
bn−3(η−1ζ−2)

bn−2 ζ
bn−1−2bn−3
0 ζ

−bn−4
−2

= ζ
bn−1−bn−3
0 ζ

bn−bn−2
−2 η

bn−2
−1 η

bn−3
−3 , (3.59)

whereas for i = −1, we get

ζ2n−1 = ζ
bn−3
3 ζ

bn−2
1 ζ

bn−1−2bn−3
−1 ζ

−bn−4
−3

= (η0ζ−1)
bn−3(η−2ζ−3)

bn−2 ζ
bn−1−2bn−3
−1 ζ

−bn−4
−3

= ζ
bn−1−bn−3
−1 ζ

bn−2−bn−4
−3 η

bn−3
0 η

bn−2
−2 , (3.60)

for n ≥ −1.
Since (2.25) is symmetric, we get

η2n = η
bn−1−bn−3
0 η

bn−bn−2
−2 ζ

bn−2
−1 ζ

bn−3
−3 , (3.61)

η2n−1 = η
bn−1−bn−3
−1 η

bn−2−bn−4
−3 ζ

bn−3
0 ζ

bn−2
−2 , (3.62)

for n ≥ −1.
Let

P̂4(λ) = λ4 − 2λ2 − λ + 1,

It is the characteristic polynomial of (3.58). Its zeros λ̂j, j = 1, 4, are distinct.
Therefore

bn =
4

∑
j=1

λ̂n+4
j

P̂′4(λ̂j)
, n ∈ Z, (3.63)

is the solution to (3.58) satisfying the initial conditions b−j = 0, k = 2, 4, b−1 = 1.
The following theorem follows from (2.18), (3.59)–(3.62).

Theorem 3.7. If a 6= 0, then the general solution to (2.8) is

x2n =
√

a

(
x0+
√

a
x0−
√

a

)bn−1−bn−3
(

x−2+
√

a
x−2−

√
a

)bn−bn−2
(

y−1+
√

a
y−1−

√
a

)bn−2
(

y−3+
√

a
y−3−

√
a

)bn−3
+ 1(

x0+
√

a
x0−
√

a

)bn−1−bn−3
(

x−2+
√

a
x−2−

√
a

)bn−bn−2
(

y−1+
√

a
y−1−

√
a

)bn−2
(

y−3+
√

a
y−3−

√
a

)bn−3
− 1

,

x2n−1 =
√

a

(
x−1+

√
a

x−1−
√

a

)bn−1−bn−3
(

x−3+
√

a
x−3−

√
a

)bn−bn−2
(

y0+
√

a
y0−
√

a

)bn−3
(

y−2+
√

a
y−2−

√
a

)bn−2
+ 1(

x−1+
√

a
x−1−

√
a

)bn−1−bn−3
(

x−3+
√

a
x−3−

√
a

)bn−bn−2
(

y0+
√

a
y0−
√

a

)bn−3
(

y−2+
√

a
y−2−

√
a

)bn−2−1 ,

y2n =
√

a

(
y0+
√

a
y0−
√

a

)bn−1−bn−3
(

y−2+
√

a
y−2−

√
a

)bn−bn−2
(

x−1+
√

a
x−1−

√
a

)bn−2
(

x−3+
√

a
x−3−

√
a

)bn−3
+ 1(

y0+
√

a
y0−
√

a

)bn−1−bn−3
(

y−2+
√

a
y−2−

√
a

)bn−bn−2
(

x−1+
√

a
x−1−

√
a

)bn−2
(

x−3+
√

a
x−3−

√
a

)bn−3
− 1

,
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y2n−1 =
√

a

(
y−1+

√
a

y−1−
√

a

)bn−1−bn−3
(

y−3+
√

a
y−3−

√
a

)bn−bn−2
(

x0+
√

a
x0−
√

a

)bn−3
(

x−2+
√

a
x−2−

√
a

)bn−2
+ 1(

y−1+
√

a
y−1−

√
a

)bn−1−bn−3
(

y−3+
√

a
y−3−

√
a

)bn−bn−2
(

x0+
√

a
x0−
√

a

)bn−3
(

x−2+
√

a
x−2−

√
a

)bn−2−1 ,

for n ≥ −1, where the sequence bn is given by (3.63).

3.8 System (2.26)

By interchanging letters ζ and η, system (2.26) is obtained from (2.21). Hence

ζ4n−3 = ζ−3η
c4n−5
0 η

c4n−4
−1 η

c4n−3
−2 η

c4n−6−1
−3 , (3.64)

ζ4n−2 = ζ−2η
c4n−4
0 η

c4n−3
−1 η

c4n−2−1
−2 η

c4n−5
−3 , (3.65)

ζ4n−1 = ζ−1η
c4n−3
0 η

c4n−2−1
−1 η

c4n−1
−2 η

c4n−4
−3 , (3.66)

ζ4n = ζ0η
c4n−2−1
0 η

c4n−1
−1 ηc4n

−2η
c4n−3
−3 , (3.67)

for n ∈N0,

ηn = η
cn−2
0 η

cn−1
−1 ηcn

−2η
cn−3
−3 , n ≥ −3. (3.68)

The following theorem follows from (2.18), (3.64)–(3.68).

Theorem 3.8. If a 6= 0, then the general solution to (2.9) is

yn =
√

a

(
y0+
√

a
y0−
√

a

)cn−2
(

y−1+
√

a
y−1−

√
a

)cn−1
(

y−2+
√

a
y−2−

√
a

)cn
(

y−3+
√

a
y−3−

√
a

)cn−3
+ 1(

y0+
√

a
y0−
√

a

)cn−2
(

y−1+
√

a
y−1−

√
a

)cn−1
(

y−2+
√

a
y−2−

√
a

)cn
(

y−3+
√

a
y−3−

√
a

)cn−3
− 1

, n ≥ −3,

x4n−3 =
√

a

(
x−3+

√
a

x−3−
√

a

) (
y0+
√

a
y0−
√

a

)c4n−5
(

y−1+
√

a
y−1−

√
a

)c4n−4
(

y−2+
√

a
y−2−

√
a

)c4n−3
(

y−3+
√

a
y−3−

√
a

)c4n−6−1
+ 1(

x−3+
√

a
x−3−

√
a

) (
y0+
√

a
y0−
√

a

)c4n−5
(

y−1+
√

a
y−1−

√
a

)c4n−4
(

y−2+
√

a
y−2−

√
a

)c4n−3
(

y−3+
√

a
y−3−

√
a

)c4n−6−1
− 1

,

x4n−2 =
√

a

(
x−2+

√
a

x−2−
√

a

) (
y0+
√

a
y0−
√

a

)c4n−4
(

y−1+
√

a
y−1−

√
a

)c4n−3
(

y−2+
√

a
y−2−

√
a

)c4n−2−1 ( y−3+
√

a
y−3−

√
a

)c4n−5
+ 1(

x−2+
√

a
x−2−

√
a

) (
y0+
√

a
y0−
√

a

)c4n−4
(

y−1+
√

a
y−1−

√
a

)c4n−3
(

y−2+
√

a
y−2−

√
a

)c4n−2−1 ( y−3+
√

a
y−3−

√
a

)c4n−5
− 1

,

x4n−1 =
√

a

(
x−1+

√
a

x−1−
√

a

) (
y0+
√

a
y0−
√

a

)c4n−3
(

y−1+
√

a
y−1−

√
a

)c4n−2−1 ( y−2+
√

a
y−2−

√
a

)c4n−1
(

y−3+
√

a
y−3−

√
a

)c4n−4
+ 1(

x−1+
√

a
x−1−

√
a

) (
y0+
√

a
y0−
√

a

)c4n−3
(

y−1+
√

a
y−1−

√
a

)c4n−2−1 ( y−2+
√

a
y−2−

√
a

)c4n−1
(

y−3+
√

a
y−3−

√
a

)c4n−4
− 1

,

x4n =
√

a

(
x0+
√

a
x0−
√

a

) (
y0+
√

a
y0−
√

a

)c4n−2−1 ( y−1+
√

a
y−1−

√
a

)c4n−1
(

y−2+
√

a
y−2−

√
a

)c4n
(

y−3+
√

a
y−3−

√
a

)c4n−3
+ 1(

x0+
√

a
x0−
√

a

) (
y0+
√

a
y0−
√

a

)c4n−2−1 ( y−1+
√

a
y−1−

√
a

)c4n−1
(

y−2+
√

a
y−2−

√
a

)c4n
(

y−3+
√

a
y−3−

√
a

)c4n−3
− 1

,

for n ∈N0, where sequence cn is given by (3.11).

3.9 System (2.27)

It is easy to see that the following relation holds

ζn = ζn−3ζn−7ζn−8, n ≥ 5. (3.69)
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We can write (3.69) as follows

ζn = ζa1
n−3ζb1

n−4ζc1
n−5ζd1

n−6ζe1
n−7ζ

f1
n−8ζ

g1
n−9ζh1

n−10, n ≥ 5, (3.70)

where, of course, the exponents are defined as follows

a1 = 1, b1 = c1 = d1 = 0, e1 = f1 = 1, g1 = h1 = 0. (3.71)

Employing (3.69) in (3.70), we have

ζn = (ζn−6ζn−10ζn−11)
a1 ζb1

n−4ζc1
n−5ζd1

n−6ζe1
n−7ζ

f1
n−8ζ

g1
n−9ζh1

n−10

= ζb1
n−4ζc1

n−5ζa1+d1
n−6 ζe1

n−7ζ
f1
n−8ζ

g1
n−9ζa1+h1

n−10 ζa1
n−11

= ζa2
n−4ζb2

n−5ζc2
n−6ζd2

n−7ζe2
n−8ζ

f2
n−9ζ

g2
n−10ζh2

n−11,

for n ≥ 8, where a2 := b1, b2 := c1, c2 := a1 + d1, d2 := e1, e2 := f1, f2 := g1, g2 := a1 + h1 and
h2 := a1.

As in the case of equation (3.53) is obtained

ζn = ζak
n−k−2ζbk

n−k−3ζck
n−k−4ζdk

n−k−5ζek
n−k−6ζ

fk
n−k−7ζ

gk
n−k−8ζhk

n−k−9, (3.72)

for a k ≥ 2 and n ≥ k + 6, and

ak = bk−1, bk = ck−1, ck = ak−1 + dk−1, dk = ek−1

ek = fk−1, fk = gk−1, gk = ak−1 + hk−1, hk = ak−1.
(3.73)

Relations (3.71) and (3.73) imply

an = an−3 + an−7 + an−8, (3.74)

for n ≥ 9 (in fact, for n ∈ Z), and

a0 = a−1 = 0, a−2 = 1, a−j = 0, j = 3, 9, a−10 = 1, a−11 = −1.

By choosing k = n− 6 in (3.72), it follows that

ζn = ζ
an−6
4 ζ

bn−6
3 ζ

cn−6
2 ζ

dn−6
1 ζ

en−6
0 ζ

fn−6
−1 ζ

gn−6
−2 ζ

hn−6
−3

= (ζ−2η0η−3)
an−6(ζ0η−1)

bn−6(ζ−1η−2)
cn−6(ζ−2η−3)

dn−6 ζ
en−6
0 ζ

fn−6
−1 ζ

gn−6
−2 ζ

hn−6
−3

= ζ
bn−6+en−6
0 ζ

cn−6+ fn−6
−1 ζ

an−6+dn−6+gn−6
−2 ζ

hn−6
−3 η

an−6
0 η

bn−6
−1 η

cn−6
−2 η

an−6+dn−6
−3

= ζ
an−2
0 ζ

an−1
−1 ζan

−2ζ
an−7
−3 η

an−6
0 η

an−5
−1 η

an−4
−2 η

an−3
−3 , (3.75)

for n ≥ −3.
Relations (3.75) and (2.27) yield

ηn = ζn−3ζn−4 = ζ
an−5+an−6
0 ζ

an−4+an−5
−1 ζ

an−3+an−4
−2 ζ

an−10+an−11
−3

×η
an−9+an−10
0 η

an−8+an−9
−1 η

an−7+an−8
−2 η

an−6+an−7
−3 , (3.76)

for n ≥ −3.
Let

P̃8(t) = t8 − t5 − t− 1 = (t4 − t− 1)(t4 + 1).
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It is the characteristic polynomial associated to (3.74). Its roots are those of (3.10) and tj+4 =

ei π(2j+1)
4 , j = 0, 3. It is not difficult to see that they are distinct.
Lemma 2.1 shows that

an =
8

∑
j=1

tn+9
j

P̃′8(tj)
, n ∈ Z, (3.77)

is the solution to (3.74) satisfying the initial conditions a−j = 0, j = 3, 9, a−2 = 1.
The following theorem follows from (2.18), (3.75) and (3.76).

Theorem 3.9. If a 6= 0, then the general solution to (2.10) is

xn =
√

a
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)an+j−2 ( x−3+
√

a
x−3−

√
a

)an−7
∏3

l=0

(
y−l+

√
a

y−l−
√

a

)an+l−6
+ 1

∏2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−2 ( x−3+
√

a
x−3−

√
a

)an−7
∏3

l=0

(
y−l+

√
a

y−l−
√

a

)an+l−6
− 1

,

yn =
√

a
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−5 ( x−3+
√

a
x−3−

√
a

)bn−10
∏3

l=0

(
y−l+

√
a

y−l−
√

a

)bn+l−9
+ 1

∏2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−5 ( x−3+
√

a
x−3−

√
a

)bn−10
∏3

l=0

(
y−l+

√
a

y−l−
√

a

)bn+l−9
− 1

,

for n ≥ −3, where the sequence an is given by (3.77) and bn = an + an−1.

3.10 System (2.28)

It is easy to see that the following relation holds

ζn = ζ2
n−3ζ−1

n−6ζn−8, n ≥ 5, (3.78)

which can be written as

ζn = ζa1
n−3ζb1

n−4ζc1
n−5ζd1

n−6ζe1
n−7ζ

f1
n−8ζ

g1
n−9ζh1

n−10, (3.79)

for n ≥ 5, where, of course, the exponents are given by

a1 = 2, b1 = c1 = 0, d1 = −1, e1 = 0, f1 = 1, g1 = h1 = 0. (3.80)

Relations (3.78) and (3.79) yield

ζn = ζa1
n−3ζb1

n−4ζc1
n−5ζd1

n−6ζe1
n−7ζ

f1
n−8ζ

g1
n−9ζh1

n−10

= (ζ2
n−6ζ−1

n−9ζn−11)
a1 ζb1

n−4ζc1
n−5ζd1

n−6ζe1
n−7ζ

f1
n−8ζ

g1
n−9ζh1

n−10

= ζb1
n−4ζc1

n−5ζ2a1+d1
n−6 ζe1

n−7ζ
f1
n−8ζ

−a1+g1
n−9 ζh1

n−10ζa1
n−11

= ζa2
n−4ζb2

n−5ζc2
n−6ζd2

n−7ζe2
n−8ζ

f2
n−9ζ

g2
n−10ζh2

n−11,

for n ≥ 8, where a2 := b1, b2 := c1, c2 := 2a1 + d1, d2 := e1, e2 := f1, f2 := −a1 + g1, g2 := h1

and h2 := a1.
As in (3.53) we obtain

ζn = ζak
n−k−2ζbk

n−k−3ζck
n−k−4ζdk

n−k−5ζek
n−k−6ζ

fk
n−k−7ζ

gk
n−k−8ζhk

n−k−9, (3.81)
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and

ak = bk−1, bk = ck−1, ck = 2ak−1 + dk−1, dk = ek−1,

ek = fk−1, fk = −ak−1 + gk−1, gk = hk−1, hk = ak−1, (3.82)

for 2 ≤ k ≤ n− 6.
Relations (3.80) and (3.82) yield

an = 2an−3 − an−6 + an−8, (3.83)

for n ≥ 9 (in fact, for n ∈ Z), and

a0 = a−1 = 0, a−2 = 1, a−j = 0, j = 3, 9, a−10 = 1, a−11 = 0.

By choosing k = n− 6 in (3.81), we obtain

ζn = ζ
an−6
4 ζ

bn−6
3 ζ

cn−6
2 ζ

dn−6
1 ζ

en−6
0 ζ

fn−6
−1 ζ

gn−6
−2 ζ

hn−6
−3

= (ζ−2η0η−3)
an−6(ζ0η−1)

bn−6(ζ−1η−2)
cn−6(ζ−2η−3)

dn−6 ζ
en−6
0 ζ

fn−6
−1 ζ

gn−6
−2 ζ

hn−6
−3

= ζ
bn−6+en−6
0 ζ

cn−6+ fn−6
−1 ζ

an−6+dn−6+gn−6
−2 ζ

hn−6
−3 η

an−6
0 η

bn−6
−1 η

cn−6
−2 η

an−6+dn−6
−3

= ζ
an−2−an−5
0 ζ

an−1−an−4
−1 ζ

an−an−3
−2 ζ

an−7
−3 η

an−6
0 η

an−5
−1 η

an−4
−2 η

an−3−an−6
−3 , (3.84)

for n ≥ −3. System (2.28) is symmetric implying that

ηn = η
an−2−an−5
0 η

an−1−an−4
−1 η

an−an−3
−2 η

an−7
−3 ζ

an−6
0 ζ

an−5
−1 ζ

an−4
−2 ζ

an−3−an−6
−3 , (3.85)

for n ≥ −3.
Let

P̂8(t) = t8 − 2t5 + t2 − 1 = (t4 − t− 1)(t4 − t + 1).

It is the characteristic polynomial of (3.83). Let t̃j, j = 1, 8, be the roots of P̂8. They are simple.
So, the solution to (3.83) such that a−j = 0, j = 3, 9, and a−2 = 1, is

an =
8

∑
j=1

t̃n+9
j

P̂′8(t̃j)
, n ∈ Z. (3.86)

The following theorem follows from (2.18), (3.84) and (3.85).

Theorem 3.10. If a 6= 0, then the general solution to (2.11) is

xn =
√

a
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−2 ( x−3+
√

a
x−3−

√
a

)an−7
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)an+j−6 ( y−3+
√

a
y−3−

√
a

)bn−3
+ 1

∏2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−2 ( x−3+
√

a
x−3−

√
a

)an−7
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)an+j−6 ( y−3+
√

a
y−3−

√
a

)bn−3
− 1

,

yn =
√

a
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−2 ( y−3+
√

a
y−3−

√
a

)an−7
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)an+j−6 ( x−3+
√

a
x−3−

√
a

)bn−3
+ 1

∏2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−2 ( y−3+
√

a
y−3−

√
a

)an−7
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)an+j−6 ( x−3+
√

a
x−3−

√
a

)bn−3
− 1

,

for n ≥ −3, where the sequence an is given by (3.86) and bn = an − an−3.
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3.11 System (2.29)

We have ζn = ηn, n ∈N, and consequently

ζn = ζn−3ζn−4,

for n ≥ 5.
From (3.8), we obtain

ζn = ζ
cn−6
4 ζ

cn−5
3 ζ

cn−4
2 ζ

cn−7
1

= (ζ−2η0η−3)
cn−6(ζ0η−1)

cn−5(ζ−1η−2)
cn−4(ζ−2η−3)

cn−7

= ζ
cn−5
0 ζ

cn−4
−1 ζ

cn−3
−2 η

cn−6
0 η

cn−5
−1 η

cn−4
−2 η

cn−3
−3 , (3.87)

for n ∈N, where cn is given by (3.11). Thus

ηn = ζ
cn−5
0 ζ

cn−4
−1 ζ

cn−3
−2 η

cn−6
0 η

cn−5
−1 η

cn−4
−2 η

cn−3
−3 , (3.88)

for n ∈N0.
The following theorem follows from (2.18), (3.87) and (3.88).

Theorem 3.11. If a 6= 0, then the general solution to (2.12) is

xn =
√

a
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−5

∏3
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−6
+ 1

∏2
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−5

∏3
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−6
− 1

,

for n ∈N, and

yn =
√

a
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−5

∏3
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−6
+ 1

∏2
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−5

∏3
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−6
− 1

,

for n ∈N0, where cn is given by (3.11).

3.12 System (2.30)

By interchanging letters ζ and η, system (2.30) is got from (2.20). Hence

ζ3n−2 = ζ−2η
c3n−4
0 η

c3n−3
−1 η

c3n−2−1
−2 η

c3n−5
−3 , (3.89)

ζ3n−1 = ζ−1η
c3n−3
0 η

c3n−2−1
−1 η

c3n−1
−2 η

c3n−4
−3 , (3.90)

ζ3n = ζ0η
c3n−2−1
0 η

c3n−1
−1 ηc3n

−2η
c3n−3
−3 , (3.91)

for n ∈N0, and

ηn = η
cn−2
0 η

cn−1
−1 ηcn

−2η
cn−3
−3 , (3.92)

for n ≥ −3.
The following theorem follows (2.18), (3.89)–(3.92).
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Theorem 3.12. If a 6= 0, then the general solution to (2.13) is

yn =
√

a

(
y0+
√

a
y0−
√

a

)cn−2
(

y−1+
√

a
y−1−

√
a

)cn−1
(

y−2+
√

a
y−2−

√
a

)cn
(

y−3+
√

a
y−3−

√
a

)cn−3
+ 1(

y0+
√

a
y0−
√

a

)cn−2
(

y−1+
√

a
y−1−

√
a

)cn−1
(

y−2+
√

a
y−2−

√
a

)cn
(

y−3+
√

a
y−3−

√
a

)cn−3
− 1

, n ≥ −3,

x3n−2 =
√

a

(
x−2+

√
a

x−2−
√

a

) (
y0+
√

a
y0−
√

a

)c3n−4
(

y−1+
√

a
y−1−

√
a

)c3n−3
(

y−2+
√

a
y−2−

√
a

)c3n−2−1 ( y−3+
√

a
y−3−

√
a

)c3n−5
+ 1(

x−2+
√

a
x−2−

√
a

) (
y0+
√

a
y0−
√

a

)c3n−4
(

y−1+
√

a
y−1−

√
a

)c3n−3
(

y−2+
√

a
y−2−

√
a

)c3n−2−1 ( y−3+
√

a
y−3−

√
a

)c3n−5
− 1

x3n−1 =
√

a

(
x−1+

√
a

x−1−
√

a

) (
y0+
√

a
y0−
√

a

)c3n−3
(

y−1+
√

a
y−1−

√
a

)c3n−2−1 ( y−2+
√

a
y−2−

√
a

)c3n−1
(

y−3+
√

a
y−3−

√
a

)c3n−4
+ 1(

x−1+
√

a
x−1−

√
a

) (
y0+
√

a
y0−
√

a

)c3n−3
(

y−1+
√

a
y−1−

√
a

)c3n−2−1 ( y−2+
√

a
y−2−

√
a

)c3n−1
(

y−3+
√

a
y−3−

√
a

)c3n−4
− 1

x3n =
√

a

(
x0+
√

a
x0−
√

a

) (
y0+
√

a
y0−
√

a

)c3n−2−1 ( y−1+
√

a
y−1−

√
a

)c3n−1
(

y−2+
√

a
y−2−

√
a

)c3n
(

y−3+
√

a
y−3−

√
a

)c3n−3
+ 1(

x0+
√

a
x0−
√

a

) (
y0+
√

a
y0−
√

a

)c3n−2−1 ( y−1+
√

a
y−1−

√
a

)c3n−1
(

y−2+
√

a
y−2−

√
a

)c3n
(

y−3+
√

a
y−3−

√
a

)c3n−3
− 1

,

for n ∈N, where cn is given by (3.11).

3.13 System (2.31)

It is easy to see that the following relation holds

ζn = ζn−6ζ2
n−7ζn−8, n ≥ 5, (3.93)

which can be written as follows

ζn = ζa1
n−6ζb1

n−7ζc1
n−8ζd1

n−9ζe1
n−10ζ

f1
n−11ζ

g1
n−12ζh1

n−13, (3.94)

for n ≥ 5, where, of course, the exponents are given by

a1 = 1, b1 = 2, c1 = 1, d1 = e1 = f1 = g1 = h1 = 0. (3.95)

Relations (3.93) in (3.94) yield

ζn = ζa1
n−6ζb1

n−7ζc1
n−8ζd1

n−9ζe1
n−10ζ

f1
n−11ζ

g1
n−12ζh1

n−13

= (ζn−12ζ2
n−13ζn−14)

a1 ζb1
n−7ζc1

n−8ζd1
n−9ζe1

n−10ζ
f1
n−11ζ

g1
n−12ζh1

n−13

= ζb1
n−7ζc1

n−8ζd1
n−9ζe1

n−10ζ
f1
n−11ζ

a1+g1
n−12 ζ2a1+h1

n−13 ζa1
n−14

= ζa2
n−7ζb2

n−8ζc2
n−9ζd2

n−10ζe2
n−11ζ

f2
n−12ζ

g2
n−13ζh2

n−14,

for n ≥ 11, where a2 := b1, b2 := c1, c2 := d1, d2 := e1, e2 := f1, f2 := a1 + g1, g2 := 2a1 + h1

and h2 := a1.
As in (3.2) are obtained the folowing relations

ζn = ζak
n−k−5ζbk

n−k−6ζck
n−k−7ζdk

n−k−8ζek
n−k−9ζ

fk
n−k−10ζ

gk
n−k−11ζhk

n−k−12, (3.96)

ak = bk−1, bk = ck−1, ck = dk−1, dk = ek−1,

ek = fk−1, fk = ak−1 + gk−1, gk = 2ak−1 + hk−1, hk = ak−1.
(3.97)

for a k ≥ 2 and n ≥ k + 9.
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Relations (3.95) and (3.97) yield

ak = ak−6 + 2ak−7 + ak−8, (3.98)

and
a−l = 0, l = 0, 4, a−5 = 1, a−j = 0, j = 6, 12.

By choosing k = n− 9 in (3.96), we get

ζn = ζ
an−9
4 ζ

bn−9
3 ζ

cn−9
2 ζ

dn−9
1 ζ

en−9
0 ζ

fn−9
−1 ζ

gn−9
−2 ζ

hn−9
−3

= (ζ−2ζ−3η0)
an−9(η0η−1)

bn−9(η−1η−2)
cn−9(η−2η−3)

dn−9 ζ
en−9
0 ζ

fn−9
−1 ζ

gn−9
−2 ζ

hn−9
−3

= ζ
en−9
0 ζ

fn−9
−1 ζ

an−9+gn−9
−2 ζ

an−9+hn−9
−3 η

an−9+bn−9
0 η

bn−9+cn−9
−1 η

cn−9+dn−9
−2 η

dn−9
−3

= ζ
an−5
0 ζ

an−4
−1 ζ

an−3
−2 ζ

an−9+an−10
−3 η

an−8+an−9
0 η

an−7+an−8
−1 η

an−6+an−7
−2 η

an−6
−3 , (3.99)

for n ≥ −3.
System (2.31) is symmetric implying that

ηn = η
an−5
0 η

an−4
−1 η

an−3
−2 η

an−9+an−10
−3 ζ

an−8+an−9
0 ζ

an−7+an−8
−1 ζ

an−6+an−7
−2 ζ

an−6
−3 (3.100)

for n ≥ −3.
Let

P̂8(t) = t8 − t2 − 2t− 1 = (t4 − t− 1)(t4 + t + 1).

It is the characteristic polynomial associated to (3.98). Let tj, j = 1, 8, be its roots. It is not
difficult to see that they are simple. Then, the solution to (3.98) such that a−j = 0, j = 6, 12,
and a−5 = 1, is given by

an =
8

∑
j=1

tn+12
j

P̂′8(tj)
, n ∈ Z. (3.101)

The following theorem follows from (2.18), (3.99) and (3.100).

Theorem 3.13. If a 6= 0, then the general solution to (2.14) is

xn =
√

a
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)an+j−5 ( x−3+
√

a
x−3−

√
a

)bn−9
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−8 ( y−3+
√

a
y−3−

√
a

)an−6
+ 1

∏2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−5 ( x−3+
√

a
x−3−

√
a

)bn−9
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−8 ( y−3+
√

a
y−3−

√
a

)an−6
− 1

,

yn =
√

a
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)an+j−5 ( y−3+
√

a
y−3−

√
a

)bn−9
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−8 ( x−3+
√

a
x−3−

√
a

)an−6
+ 1

∏2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−5 ( y−3+
√

a
y−3−

√
a

)bn−9
∏2

j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−8 ( x−3+
√

a
x−3−

√
a

)an−6
− 1

,

for n ≥ −3, where the sequence an is given by (3.101) and bn = an + an−1.

3.14 System (2.32)

By interchanging letters ζ and η, (2.32) is got from (2.27). Hence

ζn = η
an−5+an−6
0 η

an−4+an−5
−1 η

an−3+an−4
−2 η

an−10+an−11
−3 ζ

an−9+an−10
0 ζ

an−8+an−9
−1 ζ

an−7+an−8
−2 ζ

an−6+an−7
−3 , (3.102)

ηn = η
an−2
0 η

an−1
−1 ηan

−2η
an−7
−3 ζ

an−6
0 ζ

an−5
−1 ζ

an−4
−2 ζ

an−3
−3 , (3.103)

for n ≥ −3.
The following theorem follows from (2.18), (3.102) and (3.103).
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Theorem 3.14. If a 6= 0, then the general solution to (2.15) is

xn =
√

a
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−5 ( y−3+
√

a
y−3−

√
a

)bn−10
∏3

l=0

(
x−l+

√
a

x−l−
√

a

)bn+l−9
+ 1

∏2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−5 ( y−3+
√

a
y−3−

√
a

)bn−10
∏3

l=0

(
x−l+

√
a

x−l−
√

a

)bn+l−9
− 1

,

yn =
√

a
∏2

j=0

(
y−j+

√
a

y−j−
√

a

)an+j−2 ( y−3+
√

a
y−3−

√
a
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∏3

l=0

(
x−l+

√
a
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√

a

)an+l−6
+ 1
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(
y−j+

√
a
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√

a

)an+j−2 ( y−3+
√

a
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√
a

)an−7
∏3

l=0

(
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√
a

x−l−
√

a

)an+l−6
− 1

,

for n ≥ −3, where the sequence an is given by (3.77) and bn = an + an−1.

3.15 System (2.33)

By interchanging letters ζ and η, (2.33) is got from (2.23). Hence

ζn = η
an−6+an−7
0 η

an−5+an−6
−1 η

an−4+an−5
−2 η

an−4+an−7
−3 ζ

an−9+an−10
0 ζ

an−8+an−9
−1 ζ

an−7+an−8
−2 , (3.104)

ηn = η
an−3
0 η

an−2
−1 η

an−1
−2 η

an−4+an−7
−3 ζ

an−6
0 ζ

an−5
−1 ζ

an−4
−2 , (3.105)

for n ∈N.
The following theorem follows from (2.18), (3.104) and (3.105).

Theorem 3.15. If a 6= 0, then the general solution to (2.16) is

xn =
√

a
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√
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,

for n ∈N0,
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,

for n ≥ −3, and where an is given by (3.50) and bn = an + an−1.

3.16 System (2.34)

By interchanging letters ζ and η, (2.34) is got from (2.19). Hence

ζn = η
cn−2
0 η

cn−1
−1 ηcn

−2η
cn−3
−3 , n ∈N, (3.106)

and

ηn = η
cn−2
0 η

cn−1
−1 ηcn

−2η
cn−3
−3 , n ≥ −3. (3.107)

The following theorem follows from (2.18), (3.106) and (3.107).
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Theorem 3.16. If a 6= 0, then the general solution to (2.17) is

xn =
√

a
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, n ∈N,
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√
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√
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√
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)cn
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√
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√
a
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− 1

, n ≥ −3,

where cn is given by (3.11).

Remark 3.17. From (2.18) we see that a solution to a system in (1.2) is well defined if and only
if ζn 6= 1 and ηn 6= 1 for every n belonging to the domain of the system. Using this fact, as
well as above presented expressions for the sequences ζn and ηn, can be described the sets of
not well defined solutions for each of the systems. We leave it to the reader.
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[27] C. Schinas, Invariants for some difference equations, J. Math. Anal. Appl. 212(1997),
No. 1, 281–291. https://doi.org/10.1006/jmaa.1997.5499; MR1460198
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