Blow-up analysis in a quasilinear parabolic system coupled via nonlinear boundary flux

Zheng Pan and Xu Zhonghua and Gao Zhangqin: Blow-up analysis in a quasilinear parabolic system coupled via nonlinear boundary flux. (2021)

[thumbnail of ejqtde_2021_013.pdf]
Preview
Teljes mű
ejqtde_2021_013.pdf

Download (439kB) | Preview

Abstract

This paper deals with the blow-up of the solution for a system of evolution pLaplacian equations uit = div(|∇ui p−2∇ui) (i = 1, 2, . . . , k) with nonlinear boundary flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up will occur at some finite time. Moreover, when blow-up does occur, we obtain the upper and lower bounds for the blow-up time. This paper generalizes the previous results.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2021
Number: 13
ISSN: 1417-3875
Number of Pages: 13
Language: English
DOI: 10.14232/ejqtde.2021.1.13
Uncontrolled Keywords: Differenciálegyenlet
Additional Information: Bibliogr.: p. 11-13. ; összefoglalás angol nyelven
Date Deposited: 2021. Nov. 08. 09:56
Last Modified: 2021. Nov. 08. 09:56
URI: http://acta.bibl.u-szeged.hu/id/eprint/73665

Actions (login required)

View Item View Item