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Abstract. In this paper we focus on the null controllability problem for the heat equa-
tion with the so-called inverse square potential and a memory term. To this aim, we
first establish the null controllability for a nonhomogeneous singular heat equation by
a new Carleman inequality with weights which do not blow up at t = 0. Then the null
controllability property is proved for the singular heat equation with memory under a
condition on the kernel, by means of Kakutani’s fixed-point theorem.
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1 Introduction

In this paper we address the null controllability for the following singular heat equation with
memory: 

yt − yxx −
µ

x2 y =
∫ t

0
a(t, r, x)y(r, x) dr + 1ωu, (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1),

(1.1)

BCorresponding author. Email: b.allal@uhp.ac.ma
*The author thanks the MAECI (Ministry of Foreign Affairs and International Cooperation, Italy) for funding

that greatly facilitated scientific collaboration between Université Hassan 1er (Morocco) and Università di Bari
Aldo Moro (Italy)

**The author is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and she is supported by the FFABR Fondo per
il finanziamento delle attività base di ricerca 2017, by the INdAM - GNAMPA Project 2019 Controllabilità di PDE in
modelli fisici e in scienze della vita, by Fondi di Ateneo 2017/18 of the University of Bari Problemi differenziali non
linearii and by PRIN 2017-2019 Qualitative and quantitative aspects of nonlinear PDEs.

https://doi.org/10.14232/ejqtde.2021.1.14
https://www.math.u-szeged.hu/ejqtde/


2 B. Allal, G. Fragnelli and J. Salhi

where y0 ∈ L2(0, 1), T > 0 is fixed, µ is a real parameter, Q := (0, T)× (0, 1) and 1ω stands
for a characteristic function of a nonempty open subset ω of (0, 1). Here y and u are the state
variable and the control variable, respectively; a is a given L∞ function defined on (0, T)×Q.

The analysis of evolution equations involving memory terms is a topic in continuous de-
velopment. In the last decades, many researchers have started devoting their attention to this
branch of mathematics, motivated by many applications in modelling phenomena in which
the processes are affected not only by its current state but also by its history. Indeed, there is a
large spectrum of situations in which the presence of the memory may render the description
of the phenomena more accurate. This is particularly the case for models such as heat con-
duction in materials with memory, viscoelasticity, theory of population dynamics and nuclear
reactors, where one often needs to reflect the effects of the memory of the system (see for
instance [4, 8, 32, 38]).

Controllability problems for evolution equations with memory terms have been extensively
studied in the past. Among other contributions, we mention [5,21,24,27,28,30,33,39,42] which,
as in our case, deal with parabolic type equations. We also refer to [37] for an overview of the
bibliography on control problems for systems with persistent memory. The first results for a
degenerate parabolic equation with memory can be found in [1].

In this work, for the first time to our knowledge, we study the null controllability for (1.1).
We underline that here we consider not only a memory term but also a singular potential
one. In other words, given any y0 ∈ L2(0, 1), we want to show that there exists a control
function u ∈ L2(Q) such that the corresponding solution y to (1.1) satisfies y(T, x) = 0 for
every x ∈ [0, 1]. First results in this direction are obtained in [46] in the absence of a memory
term when µ ≤ 1

4 (see also [45] for the wave and Schrödinger equations and [11] for boundary
singularity). Indeed, for the equation

ut − ∆u− µ
1
|x|2 u = 0, (t, x) ∈ (0, T)×Ω, (1.2)

with associated Dirichlet boundary conditions in a bounded domain Ω ⊂ RN containing the
singularity x = 0 in the interior, the value of the parameter µ determines the behavior of the
equation: if µ ≤ 1/4 (which is the optimal constant of the Hardy inequality, see [9]) global
positive solutions exist, while, if µ > 1/4, instantaneous and complete blow-up occurs (for
other comments on this argument we refer to [44]). In the case of global positive solutions,
hence if µ ≤ 1

4 , using Carleman estimates, it has been proved that such equations can be
controlled (in any time T > 0) by a locally distributed control (see [46]). On the contrary, if
µ > 1

4 , the null controllability fails as shown in [14]. After these first results, several other
works followed extending them in various situations (see for instance [6, 7, 11, 15–20, 36, 44]).

However, when µ = 0 and a = 1, (1.1) reduces to the following control system associated
to the classical heat equation with memory:

yt − yxx =
∫ t

0
y(s) dr + 1ωu, (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1).

(1.3)

In this case, as shown in [24, 49], there exists a set of initial conditions such that the null
controllability property for (1.3) fails whenever the control region ω is fixed, independent of
time. For some related works in this respect we also refer to [12, 28, 48].



Null controllability for a singular heat equation with a memory term 3

Nevertheless, since the positive controllability results are important in real world applica-
tions, it is natural to analyze whether it is possible that control properties for (1.1) could be
obtained. For this reason, under suitable conditions on the singularity parameter µ and on
the kernel a (see (3.1)), we establish that (1.1) is null controllable.

Our approach is inspired from the techniques presented in the work [42] for the heat
equation perturbed with a memory-type kernel, suitably adapted in order to deal with the
additional inverse-square potential.

We recall that a natural technique for showing controllability results for parabolic equa-
tions is to prove an observability estimate for their adjoint systems by Carleman inequalities.
However, this classical strategy does not seem to be appropriate for studying the controlla-
bility problem for integro-differential parabolic equations like (1.1). In fact, as in [10, 42], in
this case we shall argue by a fixed point procedure. For this reason, we shall introduce a
nonhomogeneous singular heat equation for which we prove a null controllability result by
a modified Carleman inequality with weighted functions that do not blow up at t = 0. This
is crucial in order to get the null controllability of the memory system (1.1) by weakening
the assumptions on the kernel a. Finally, we mention that Carleman inequalities for singular
equations without memory have been obtained in [44, 46], but the employment of a weight
blowing up at t = 0 and t = T in the Carleman inequality does not permit to consider a
general kernel a.

The paper is organized as follows: Section 2 is devoted to the study of null controllability
for a nonhomogeneous singular heat equation without memory via new Carleman estimates.
In Section 3, the null controllability for the singular heat equation with memory (1.1) is proved.

A final comment on the notation: by C we shall denote universal positive constants, which
are allowed to vary from line to line.

2 Nonhomogeneous singular heat equation

In this section, we prove the null controllability for a nonhomogeneous singular heat equation
using a new modified Carleman inequality. This null controllability result is the key tool for
the controllability of the heat equation with memory. Thus, as a first step, we consider the
following problem:


yt − yxx −

µ

x2 y = f + 1ωu(t), (t, x) ∈ Q := (0, T)× (0, 1),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1),

(2.1)

where f ∈ L2(Q) is a given source term.
Prior to null controllability is the well-posedness of (2.1), a question we address in the next

subsection.

2.1 Functional framework and well-posedness

We analyze here existence and uniqueness of solutions for the heat problem (2.1). To sim-
plify the presentation, we first focus on the well-posedness of the following inhomogeneous



4 B. Allal, G. Fragnelli and J. Salhi

singular problem 
yt − yxx −

µ

x2 y = f , (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1).

(2.2)

In this framework, in order to deal with the singularity of the potential, a fundamental tool is
the very famous Hardy inequality. To fix the ideas, we recall here the basic form of the Hardy
inequality in dimension one (see, for example, [29, Theorem 327] or [13, Lemma 5.3.1]):

1
4

∫ 1

0

y2

x2 dx ≤
∫ 1

0
y2

x dx, (2.3)

which is valid for every y ∈ H1(0, 1) with y(0) = 0.
Now, for any µ ≤ 1

4 , we define

H1,µ
0 (0, 1) :=

{
y ∈ L2(0, 1) ∩ H1

loc((0, 1]) | y(0) = y(1) = 0, and
∫ 1

0

(
y2

x − µ
y2

x2

)
dx < +∞

}
.

Note that H1,µ
0 (0, 1) is a Hilbert space obtained as the completion of C∞

c (0, 1), or H1
0(0, 1), with

respect to the norm

‖y‖µ :=
(∫ 1

0
(y2

x − µ
y2

x2 ) dx
) 1

2

, ∀ y ∈ H1
0(0, 1).

In the case of a sub-critical parameter µ < 1
4 , thanks to the Hardy inequality (2.3), one can see

that ‖ · ‖µ is equivalent to the standard norm of H1
0(0, 1), and thus H1,µ

0 (0, 1) = H1
0(0, 1). In

the critical case µ = 1
4 , it is proved (see [47]) that this identification does not hold anymore

and the space H1,µ
0 (0, 1) is slightly (but strictly) larger than H1

0(0, 1).
Now, define the operator A : D(A) ⊂ L2(0, 1) → L2(0, 1) corresponding to the heat

equation with an inverse square potential in the following way:

Ay := yxx +
µ

x2 y

∀ y ∈ D(A) :=
{

y ∈ H2
loc((0, 1]) ∩ H1,µ

0 (0, 1) : yxx +
µ

x2 y ∈ L2(0, 1)
}

.

In this context, A is self-adjoint, nonpositive on L2(0, 1) and it generates an analytic semi-
group of contractions in L2(0, 1) for the equation (2.2) (see [47]). Consequently, the singular
heat equation (2.2) is well-posed. To be precise, the next result holds.

Theorem 2.1. For all f ∈ L2(Q) and y0 ∈ L2(0, 1), there exists a unique solution

y ∈ W := C
(
[0, T]; L2(0, 1)

)
∩ L2(0, T; H1,µ

0 (0, 1)
)

of (2.2) such that

sup
t∈[0,T]

‖y(t)‖2
L2(0,1) +

∫ T

0
‖y(t)‖2

µdt ≤ CT

(
‖y0‖2

L2(0,1) + ‖ f ‖2
L2(Q)

)
, (2.4)

for some positive constant CT. Moreover, if y0 ∈ H1,µ
0 (0, 1), then

y ∈ Z := H1(0, T; L2(0, 1)
)
∩ L2(0, T; D(A)

)
∩ C

(
[0, T]; H1,µ

0 (0, 1)
)
, (2.5)
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and there exists a positive constant C such that

sup
t∈[0,T]

(
‖y(t)‖2

µ

)
+
∫ T

0

(
‖yt‖2

L2(0,1) +
∥∥∥yxx +

µ

x2 y
∥∥∥2

L2(0,1)

)
dt ≤ C

(
‖y0‖2

µ + ‖ f ‖2
L2(Q)

)
. (2.6)

Proof. In [47], the authors use semigroup theory to obtain the well-posedness result for the
problem (2.2) (see also [36]). Thus, in the rest of the proof, we will prove only (2.4)–(2.6). First,
being A the generator of a strongly continuous semigroup on L2(0, 1), if y0 ∈ L2(0, 1), then
the solution y of (2.2) belongs to C

(
[0, T]; L2(0, 1)

)
∩ L2(0, T; H1,µ

0 (0, 1)
)
, while, if y0 ∈ D(A),

then y ∈ H1(0, T; L2(0, 1)
)
∩ L2(0, T; D(A)

)
.

Now, by a usual energy method we shall prove (2.5) and (2.6), from which the last required
regularity property for y will follow by standard linear arguments. First, take y0 ∈ D(A) and
multiply the equation of (2.2) by y. By the Cauchy–Schwarz inequality we obtain for every
t ∈ (0, T],

1
2

d
dt
‖y(t)‖2

L2(0,1) + ‖y(t)‖
2
µ ≤

1
2
‖ f (t)‖2

L2(0,1) +
1
2
‖y(t)‖2

L2(0,1). (2.7)

From (2.7) and using Gronwall’s inequality, we get

‖y(t)‖2
L2(0,1) ≤ eT

(
‖y(0)‖2

L2(0,1) + ‖ f ‖2
L2(Q)

)
(2.8)

for every t ≤ T. From (2.7) and (2.8) we immediately obtain

∫ T

0
‖y(t)‖2

µdt ≤ CT

(
‖y(0)‖2

L2(0,1) + ‖ f ‖2
L2(Q)

)
(2.9)

for some universal constant CT > 0. Thus, by (2.8) and (2.9), (2.4) follows if y0 ∈ D(A). Since
D(A) is dense in L2(0, 1) (see [43, 47]), the same inequality holds if y0 ∈ L2(0, 1).

Now, multipling the equation by −yxx − µ
x2 y, integrating on (0, 1) and using the Cauchy–

Schwarz inequality, we easily get

d
dt
‖y(t)‖2

µ + ‖yxx(t) +
µ

x2 y(t)‖2
L2(0,1) ≤ ‖ f (t)‖2

L2(0,1)

for every t ∈ [0, T], so that, as before, we find C′T > 0 such that

‖y(t)‖2
µ +

∫ T

0
‖yxx(t) +

µ

x2 y(t)‖2
L2(0,1)dt ≤ C′T

(
‖y(0)‖µ + ‖ f ‖2

L2(Q)

)
(2.10)

for every t ≤ T. Finally, from yt = yxx +
µ

x2 y + f , squaring and integrating on Q, we find

∫ T

0
‖yt(t)‖2

L2(0,1) ≤ C
(∫ T

0
‖yxx +

µ

x2 y‖2
L2(0,1) + ‖ f ‖2

L2(Q)

)
,

and together with (2.10) we have

∫ T

0
‖yt(t)‖2

L2(0,1) ≤ C
(
‖y(0)‖2

µ + ‖ f ‖2
L2(Q)

)
. (2.11)

In conclusion, (2.7), (2.8), (2.10) and (2.11) give (2.4) and (2.6). Notice that, (2.5) and (2.6)
hold also if y0 ∈ H1,µ

0 (0, 1).
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2.2 Carleman estimates for a singular problem

In this subsection we prove a new Carleman estimate for the adjoint parabolic equation as-
sociated to (2.1), which will provide that the nonhomogeneous singular heat equation (2.1) is
null controllable. Hence, in the following, we concentrate on the next adjoint problem

−zt − zxx −
µ

x2 z = g, (t, x) ∈ Q,

z(t, 0) = z(t, 1) = 0, t ∈ (0, T),

z(T, x) = zT(x), x ∈ (0, 1).

(2.12)

Following [46], for every 0 < γ < 2, let us introduce the weight function

ϕ(t, x) := θ(t)ψ(x), (2.13)

where

ψ(x) := c(x2 − d), θ(t) :=
(

1
t(T − t)

)k

, k := 1 +
2
γ

, (2.14)

c > 0 and d > 1. A more precise restriction on the parameters k, c and d will be needed later.
Observe that lim

t→0+
θ(t) = lim

t→T−
θ(t) = +∞, and

ψ(x) < 0 for every x ∈ [0, 1].

Using the previous weight functions and the following improved Hardy–Poincaré inequal-
ity given in [44]:

For all η > 0, there exists some positive constant C = C(η) > 0 such that, for all z ∈ C∞
c (0, 1) :∫ 1

0
xηz2

x dx ≤ C
∫ 1

0

(
z2

x −
1
4

z2

x2

)
dx, (2.15)

one can prove the following Carleman estimate for the case of a purely singular parabolic
equation:

Lemma 2.2 ([44, Theorem 5.1]). Assume that µ ≤ 1
4 . Then, there exists C > 0 and s0 > 0 such that,

for all s ≥ s0, every solution z of (2.12) satisfies∫∫
Q

s3θ3x2z2e2sϕ dx dt +
∫∫

Q
sθ

(
z2

x − µ
z2

x2

)
e2sϕ dx dt +

∫∫
Q

sθ
z2

xγ
e2sϕ dx dt

≤ C
(∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθz2

x(t, 1)e2sϕ(t,1) dx dt
)

. (2.16)

Observe that, if the term ∫∫
Q

sθ

(
z2

x − µ
z2

x2

)
e2sϕ dx dt

is not positive, then the estimate (2.16) is not of great importance. In fact, the Hardy inequality
(2.3) only ensures the positivity of the quantity∫∫

Q
sθ

(
z2

x − µ
z2

x2

)
dx dt.

However, from [44, Remark 3] and similarly as in [25], we will rewrite the result given in
Lemma 2.2 in a more practical way.
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Lemma 2.3. Assume that µ ≤ 1
4 . Then, there exist C > 0 and s0 > 0 such that, for all s ≥ s0, every

solution z of (2.12) satisfies

Jϕ,η,γ(z) ≤ C
(∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθz2

x(t, 1)e2sϕ(t,1) dx dt
)

, (2.17)

where

Jϕ,η,γ(z) =
∫∫

Q
s3θ3x2z2e2sϕ dx dt +

∫∫
Q

sθz2
xe2sϕ dx dt +

∫∫
Q

sθ
z2

x2 e2sϕ dx dt, (2.18)

if µ < 1
4 , and

Jϕ,η,γ(z) =
∫∫

Q
s3θ3x2z2e2sϕ dx dt +

∫∫
Q

sθxηz2
xe2sϕ dx dt +

∫∫
Q

sθ
z2

xγ
e2sϕ dx dt, (2.19)

if µ = 1
4 . We recall that 0 < γ < 2.

Proof. Case 1: If µ < 1
4 .

Let Z = zesϕ. In order to prove [44, Theorem 5.1], the author has derived the following
estimate ∫∫

Q
s3θ3x2Z2 dx dt +

∫∫
Q

sθ

(
Z2

x − µ
Z2

x2

)
dx dt +

∫∫
Q

sθ
Z2

xγ
dx dt

≤ C
(∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθZ2

x(t, 1) dx dt
)

. (2.20)

Let δ < inf(1, (1− 4µ)) be a fixed positive constant. We have∫∫
Q

sθ

(
Z2

x − µ
Z2

x2

)
dx dt = (1− δ)

∫∫
Q

sθ

(
Z2

x −
1
4

Z2

x2

)
dx dt

+ δ
∫∫

Q
sθZ2

x dx dt +
(

1
4
(1− δ)− µ

) ∫∫
Q

sθ
Z2

x2 dx dt. (2.21)

By (2.20) and (2.21), we obtain∫∫
Q

s3θ3x2Z2 dx dt + (1− δ)
∫∫

Q
sθ

(
Z2

x −
1
4

Z2

x2

)
dx dt + δ

∫∫
Q

sθZ2
x dx dt

+

(
1
4
(1− δ)− µ

) ∫∫
Q

sθ
Z2

x2 dx dt +
∫∫

Q
sθ

Z2

xγ
dx dt

≤ C
(∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθZ2

x(t, 1) dx dt
)

.

On the other hand, from (2.15), for all η > 0 there exists a constant c0 = c0(η) > 0 such that∫∫
Q

sθ

(
Z2

x −
1
4

Z2

x2

)
dx dt ≥ c0

∫∫
Q

sθxηZ2
x dx dt. (2.22)

Hence, ∫∫
Q

s3θ3x2Z2 dx dt + (1− δ)c0

∫∫
Q

sθxηZ2
x dx dt + δ

∫∫
Q

sθZ2
x dx dt

+

(
1
4
(1− δ)− µ

) ∫∫
Q

sθ
Z2

x2 dx dt +
∫∫

Q
sθ

Z2

xγ
dx dt

≤ C
(∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθZ2

x(t, 1) dx dt
)

. (2.23)
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Using the definition of Z, we have
Z2 = z2e2sϕ, (2.24)

Zx = zxesϕ + sθψxZ and z2
xe2sϕ ≤ 2Z2

x + cs2θ2x2Z2, (2.25)

for a positive constant c. Then,∫∫
Q

sθz2
xe2sϕ dx dt ≤ 2

∫∫
Q

sθZ2
x dx dt + c

∫∫
Q

s3θ3x2Z2 dx dt. (2.26)

Combining (2.23)–(2.26), we obtain the desired estimate (2.17). Indeed, defining

a0 = min
{

1
1 + c

,
δ

2
,
(

1
4
(1− δ)− µ

)}
> 0,

we have

a0

(∫∫
Q

s3θ3x2z2e2sϕ dx dt +
∫∫

Q
sθz2

xe2sϕ dx dt +
∫∫

Q
sθ

z2

x2 e2sϕ dx dt +
∫∫

Q
sθ

z2

xγ
e2sϕ dx dt

)
≤ a0

(
(1 + c)

∫∫
Q

s3θ3x2Z2 dx dt + 2
∫∫

Q
sθZ2

xdxdt +
∫∫

Q
sθ

Z2

x2 dx dt +
∫∫

Q
sθ

Z2

xγ
dx dt

)
≤
∫∫

Q
s3θ3x2Z2 dx dt + δ

∫∫
Q

sθZ2
xdxdt +

(
1
4
(1− δ)− µ

) ∫∫
Q

sθ
Z2

x2 dx dt +
∫∫

Q
sθ

Z2

xγ
dx dt

≤
∫∫

Q
s3θ3x2Z2 dx dt + (1− δ)c0

∫∫
Q

sθxηZ2
x dx dt + δ

∫∫
Q

sθZ2
x dx dt

+

(
1
4
(1− δ)− µ

) ∫∫
Q

sθ
Z2

x2 dx dt +
∫∫

Q
sθ

Z2

xγ
dx dt

≤ C
(∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθZ2

x(t, 1) dx dt
)

.

Thus, the conclusion follows.

Case 2: If µ = 1
4 .

As before, let Z = zesϕ and define

a0 = min
{

1
1 + c

,
c0

2

}
> 0,

where c0 and c are the constants of (2.22) and (2.25), respectively. Then, by (2.20), (2.22), (2.24)
and (2.25), that still hold if µ = 1

4 , we have

a0

(∫∫
Q

s3θ3x2z2e2sϕ dx dt +
∫∫

Q
sθxηz2

xe2sϕ dx dt +
∫∫

Q
sθ

z2

xγ
e2sϕ dx dt

)
≤ a0

(∫∫
Q

s3θ3x2Z2 dx dt + 2
∫∫

Q
sθxηZ2

x dx dt + c
∫∫

Q
s3θ3x2Z2 dx dt +

∫∫
Q

sθ
Z2

xγ
dx dt

)
≤ a0(1 + c)

∫∫
Q

s3θ3x2Z2 dx dt + a0
2
c0

∫∫
Q

sθ

(
Z2

x −
1
4

Z2

x2

)
dx dt + a0

∫∫
Q

sθ
Z2

xγ
dx dt

(by (2.20))

≤ C
(∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθz2

x(t, 1)e2sϕ(t,1) dx dt
)

.

(2.27)

Hence, also in this case the conclusion follows.
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We point out that the Carleman estimates stated above are not appropriate to achieve our
goal. In fact, all these estimates does not have the observation term in the interior of the
domain. However, we use them to obtain the main Carleman estimate stated in Proposition
2.5. More precisely, from the boundary Carleman estimates (2.17), we will deduce a global
Carleman estimate for the adjoint problem (2.12) with a distributed observation on a subregion

ω′ := (α′, β′) ⊂⊂ ω. (2.28)

To do so, we recall the following weight functions associated to nonsingular Carleman esti-
mates which are suited to our purpose:

Φ(t, x) := θ(t)Ψ(x)

where θ is defined in (2.14) and Ψ(x) = eρσ − e2ρ‖σ‖∞ . Here ρ > 0, σ ∈ C2([0, 1]) is such that
σ(x) > 0 in (0, 1), σ(0) = σ(1) = 0 and σx(x) 6= 0 in [0, 1] \ ω̃, being ω̃ an arbitrary open
subset of ω.

In the following, we choose the constant c in (2.14) so that

c ≥ e2ρ‖σ‖∞ − 1
d− 1

.

By this choice one can prove that the function ϕ defined in (2.13) satisfies the next estimate

ϕ(t, x) ≤ Φ(t, x) for every (t, x) ∈ [0, T]× [0, 1]. (2.29)

Thanks to this property, we can prove the main Carleman estimate of this paper whose
proof is based also on the following Caccioppoli’s inequality:

Proposition 2.4 (Caccioppoli’s inequality). Let ω′ and ω′′ be two nonempty open subsets of (0, 1)
such that ω′′ ⊂ ω′ and φ(t, x) = θ(t)$(x), where $ ∈ C2(ω′, R). Then, there exists a constant
C > 0 such that any solution z of (2.12) satisfies∫∫

Qω′′
z2

xe2sφ dx dt ≤ C
∫∫

Qω′
(g2 + s2θ2z2)e2sφ dx dt, (2.30)

where Qω := (0, T)×ω.

The proof of the previous result is similar to the one given, for instance, in [3, Lemma 6.1],
so we omit it.

Now, we are ready to prove the following result:

Proposition 2.5. Assume that µ ≤ 1
4 . Then, there exist two positive constants C and s0 such that, the

solution z of equation (2.12) satisfies, for all s ≥ s0

Jϕ,η,γ(z) ≤ C
(∫∫

Q
g2e2sΦ dx dt +

∫∫
Qω′

s3θ3z2e2sΦ dx dt
)

. (2.31)

Here Jϕ,η,γ(·) is defined in (2.18) or (2.19).

Proof. Let us set ω′′ = (α′′, β′′) ⊂⊂ ω′ and consider a smooth cut-off function ξ ∈ C∞([0, 1])
such that 0 ≤ ξ(x) ≤ 1 for x ∈ (0, 1), ξ(x) = 1 for x ∈ [0, α′′] and ξ(x) = 0 for x ∈ [β′′, 1].
Define w := ξz where z is the solution of (2.12). Then, w satisfies the following problem:

−wt − wxx −
µ

x2 w = ξg− ξxxz− 2ξxzx, (t, x) ∈ Q,

w(t, 1) = w(t, 0) = 0, t ∈ (0, T),

w(T, x) = ξ(x)zT(x), x ∈ (0, 1).

(2.32)
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First of all, we prove the first intermediate Carleman estimate for z in (0, T)× (0, α′) (recall
that z ≡ w in [0, α′]):

Jϕ,η,γ(w) ≤ C
(∫∫

Q
ξ2g2e2sϕ dx dt +

∫∫
Qω′

(g2 + s2θ2z2)e2sϕ dx dt
)

≤ C
(∫∫

Q
ξ2g2e2sΦ dx dt +

∫∫
Qω′

(g2 + s2θ2z2)e2sΦ dx dt
)

.
(2.33)

The second inequality in (2.33) follows by (2.29), thus it is sufficient to prove the first inequality
of (2.33). Applying the Carleman estimate (2.17) to (2.32), we obtain

Jϕ,η,γ(w) ≤ C
∫∫

Q

(
ξ2g2 +

(
ξxxz + 2ξxzx

)2
)

e2sϕ dx dt. (2.34)

From the definition of ξ and the Caccioppoli inequality (2.30), we obtain

∫∫
Q

(
ξxxz + 2ξxzx

)2e2sϕ dx dt ≤ C
∫∫

Qω′′
(z2 + z2

x)e
2sϕ dx dt

≤ C
∫∫

Qω′
(g2 + s2θ2z2)e2sϕ dx dt. (2.35)

Combining (2.34) and (2.35) we obtain (2.33).
Now, using the non singular Carleman estimate of Corollary 5.2, we are going to show a

second estimate of z in (0, T)× (β′, 1). For this purpose, let v = ζz where ζ := 1− ξ (hence
z ≡ v in [β′, 1]). Clearly, the function v is a solution of the uniformly parabolic equation

−vt − vxx −
µ

x2 v = ζg− ζxxz− 2ζxzx, (t, x) ∈ (0, T)× (α′, 1),

v(t, 1) = v(t, α′) = 0, t ∈ (0, T),

v(T, x) = ζ(x)zT(x), x ∈ (α′, 1).

(2.36)

Since ζ has its support in [α′′, β′′], by Corollary 5.2 we have

∫∫
Q

(
sθv2

x + s3θ3v2
)

e2sΦ dx dt =
∫ T

0

∫ 1

α′

(
sθv2

x + s3θ3v2
)

e2sΦ dx dt

≤ C

( ∫ T

0

∫ 1

α′

(
ζ2g2 +

(
ζxxz + 2ζxzx

)2
)

e2sΦ dx dt +
∫∫

Qω′′
s3θ3v2e2sΦ dx dt

)

≤ C

( ∫∫
Q

ζ2g2e2sΦ dx dt +
∫∫

Qω′′
(z2 + z2

x)e
2sΦ dx dt +

∫∫
Qω′′

s3θ3v2e2sΦ dx dt

)
.

Therefore, by the previous estimate, by (2.29) and using the Caccioppoli inequality (2.30),
we deduce∫∫

Q

(
sθv2

x + s3θ3v2
)

e2sϕ dx dt ≤
∫∫

Q

(
sθv2

x + s3θ3v2
)

e2sΦ dx dt

≤ C

( ∫∫
Q

ζ2g2e2sΦ dx dt +
∫∫

Qω′

(
g2 + s3θ3z2)e2sΦ dx dt

)
.

(2.37)
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Thus, since v = ζz has its support in [0, T]× [α′′, 1], that is far away from the singularity point
x = 0, one can prove that there exists a constant C > 0 such that:

Jϕ,η,γ(v) ≤ C
∫∫

Q

(
sθv2

x + s3θ3v2
)

e2sϕ dx dt

(by (2.37))

≤ C
(∫∫

Q
ζ2g2e2sΦ dx dt +

∫∫
Qω′

(
g2 + s3θ3z2)e2sΦ dx dt

)
.

(2.38)

Note that

z2 = (w + v)2 ≤ 2(w2 + v2) and z2
x = (wx + vx)

2 ≤ 2(w2
x + v2

x).

Therefore, adding (2.33) and (2.38), (2.31) follows immediately.

For our purposes in the next section, we concentrate now on a Carleman inequality for
solutions of (2.12) obtained via weight functions not exploding at t = 0. To this end, we will
apply a classical argument that can be found, for instance, in [22] and recently in [1] for a
degenerate parabolic equation with memory. More precisely, let us consider the function:

ν(t) =


θ

(
T
2

)
, t ∈

[
0,

T
2

]
,

θ(t), t ∈
[

T
2

, T
]

,
(2.39)

and the following associated weight functions:

ϕ̃(t, x) := ν(t)ψ(x), Φ̃(t, x) := ν(t)Ψ(x),

Φ̂(t) := max
x∈[0,1]

Φ̃(t, x), ϕ̂(t) := max
x∈[0,1]

ϕ̃(t, x) and ϕ̌(t) := min
x∈[0,1]

ϕ̃(t, x). (2.40)

Now we are ready to state and prove this new modified Carleman estimate for the adjoint
problem (2.12).

Lemma 2.6. Assume that µ ≤ 1
4 . Then, there exist two positive constants C and s0 such that every

solution z of (2.12) satisfies, for all s ≥ s0

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫∫
Q

νz2e2sϕ̃ dx dt

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]

(∫∫
Q

g2e2sΦ̃ dx dt +
∫∫

Qω

s3ν3z2e2sΦ̃ dx dt
)

. (2.41)

Proof. By the definitions of ν and ϕ̃ and using Proposition 2.5, it results that there exists a
positive constant C such that all the solutions to equation (2.12) satisfy∫ T

T
2

∫ 1

0
νz2e2sϕ̃ dx dt =

∫ T

T
2

∫ 1

0
θz2e2sϕ dx dt ≤ C

∫ T

T
2

∫ 1

0
sθ

z2

xγ
e2sϕ dx dt

≤ C
(∫∫

Q
g2e2sΦ dx dt +

∫∫
Qω′

s3θ3z2e2sΦ dx dt
)

. (2.42)

Let us introduce a function τ ∈ C1([0, T]) such that τ = 1 in
[
0, T

2

]
and τ ≡ 0 in

[ 5T
8 , T

]
.

Denote τ̃ = esϕ̂(0)√ντ, where esϕ̂(0) = max0≤t≤T esϕ̂(t).
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Let z̃ = τ̃z, then z̃ satisfies
−z̃t − z̃xx −

µ

x2 z̃ = −τ̃tz + τ̃g, (t, x) ∈ Q,

z̃(t, 0) = z̃(t, 1) = 0, t ∈ (0, T),

z̃(T, x) = 0, x ∈ (0, 1).

(2.43)

Thanks to the estimate of supt∈[0,T] ‖z̃(t)‖2
L2(0,1) (see the energy estimate (2.4)), we have

‖z̃(0)‖2
L2(0,1) + ‖z̃‖

2
L2(Q) ≤ C

∫∫
Q
(τ̃tz + τ̃g)2 dx dt,

which implies

ν(0)‖esϕ̂(0)z(0)‖2
L2(0,1) + ‖e

sϕ̂(0)√ντz‖2
L2(Q) ≤ C

∫∫
Q
(τ̃tz + τ̃g)2 dx dt.

By using the boundedness of θ in
[ T

2 , 5T
8

]
, the definitions of τ and of ν in

[
0, 5T

8

]
and the fact

that νt(t) = 0 in
[
0, T

2

]
and τ(t) = 0 in

[ 5T
8 , T

]
, it holds that

c̄

(
‖esϕ̂(0)z(0)‖2

L2(0,1) +
∫ 5T

8

0

∫ 1

0
ντ2z2e2sϕ̂ dx dt

)

≤ ν(0)‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ 5T
8

0

∫ 1

0
ντ2z2e2sϕ̂ dx dt

≤ C

(∫ 5T
8

T
2

∫ 1

0
(θ2(t) + θ(t))z2e2sϕ̂(0) dx dt +

∫ 5T
8

0

∫ 1

0
νg2e2sϕ̂(0) dx dt

)

≤ C

(∫ 5T
8

T
2

∫ 1

0
z2e2sϕ̂(0) dx dt +

∫ 5T
8

0

∫ 1

0
g2e2sϕ̂(0) dx dt

)
,

where c̄ := min{ν(0), 1}. That is,

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ T
2

0

∫ 1

0
νz2e2sϕ̃ dx dt

≤ C

(∫ 5T
8

T
2

∫ 1

0
z2e2s(ϕ̂(0)−ϕ̃)e2sϕ̃ dx dt +

∫ 5T
8

0

∫ 1

0
g2e2s(ϕ̂(0)−ϕ̃)e2sϕ̃ dx dt

)
.

Observe that

ϕ̌

(
5T
8

)
≤ ϕ̃ in

(
0,

5T
8

)
× (0, 1)

so that,

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ T
2

0

∫ 1

0
νz2e2sϕ̃ dx dt

≤ Ce2s(ϕ̂(0)−ϕ̌( 5T
8 ))

(∫ 5T
8

T
2

∫ 1

0
z2e2sϕ̃ dx dt +

∫ 5T
8

0

∫ 1

0
g2e2sϕ̃ dx dt

)
. (2.44)

As in (2.42), one can prove that there exists a positive constant C such that∫ 5T
8

T
2

∫ 1

0
z2e2sϕ̃ dx dt ≤ C

(∫∫
Q

g2e2sΦ dx dt +
∫∫

Qω

s3θ3z2e2sΦ dx dt
)

.
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Using this last inequality in (2.44), we have

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ T
2

0

∫ 1

0
νz2e2sϕ̃ dx dt

≤ Ce2s(ϕ̂(0)−ϕ̌( 5T
8 ))

(∫∫
Q

g2e2sΦ dx dt +
∫∫

Qω

s3θ3z2e2sΦ dx dt +
∫ 5T

8

0

∫ 1

0
g2e2sϕ̃ dx dt

)
. (2.45)

From (2.29) and by the definition of the modified weights, notice that, in particular ϕ̃ ≤ Φ̃ and
Φ ≤ Φ̃ in Q. This, together with (2.42) and (2.45), implies that

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ T

0

∫ 1

0
νz2e2sϕ̃ dx dt

≤ Ce2s(ϕ̂(0)−ϕ̌( 5T
8 ))

(∫∫
Q

g2e2sΦ̃ dx dt +
∫∫

Qω

s3θ3z2e2sΦ dx dt
)

. (2.46)

To conclude, it suffices to remark that for c > 0, the function s 7→ s3e−cs is nonincreasing for s
sufficiently large. So, since ν(t) ≤ θ(t) by taking s large enough, one has

s3θ3e2sΦ ≤ s3ν3e2sΦ̃,

which, together with (2.46), provides the desired inequality.

2.3 Null controllability result

Following the classical method as in [22], with the modified Carleman inequality proved
in the previous subsection, we can get a null controllability result for (2.1). However, as
explained in [42], this null controllability result cannot help to solve the controllability for
integro-differential equations. Indeed, we will need to prove the null controllability of the
singular heat equation (2.1), for more regular solutions. For this reason, to formulate our
results we introduce the following function space where the controllability will be solved:

Xs :=
{

y ∈ Z : e−sΦ̃y ∈ L2(Q)
}

equipped with the norm

‖y‖Xs := ‖e−sΦ̃y‖L2(Q).

Observe that, since Φ̃ < 0, we have that the function e−sΦ̃ tends to +∞ for t→ T−. Therefore,
y ∈ Xs requires that the solution y has more regularity than the one in Lemma 2.1. Moreover,

if y ∈ Xs then y(T, x) = 0 in (0, 1). (2.47)

From now on, we denote by s0 the parameter defined in Lemma 2.6. Our first result, stated as
follows, ensures the null controllability for (2.1).

Theorem 2.7. Assume that µ ≤ 1
4 and y0 ∈ H1,µ

0 (0, 1). If e−sϕ̃ f ∈ L2(Q) with s ≥ s0, then there
exists a control function u ∈ L2(Q), such that the associated solution y of (2.1) belongs to Xs.

Moreover, there exists a positive constant C such that y satisfies the following estimate:∫∫
Q

y2e−2sΦ̃ dx dt +
∫∫

Qω

s−3ν−3u2e−2sΦ̃ dx dt

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]

(∫∫
Q

f 2e−2sϕ̃ dx dt + ‖y0e−sϕ̂(0)‖2
L2(0,1)

)
.

(2.48)
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Proof. Following the ideas in [10, 42], fixed s ≥ s0, let us consider the functional

J(y, u) =
(∫∫

Q
y2e−2sΦ̃ dx dt +

∫∫
Qω

s−3ν−3u2e−2sΦ̃ dx dt
)

, (2.49)

where (y, u) satisfies 
yt − yxx −

µ

x2 y = f + 1ωu(t), (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), y(T, x) = 0, x ∈ (0, 1),

(2.50)

with u ∈ L2(Q).
By means of standard arguments, it is easy to prove (see [34,35]) that J attains its minimizer

at a unique point denoted as (ȳ, ū).
We set

Lµy := yt − yxx −
µ

x2 y in Q.

We will first prove that there exists a dual variable z̄ such that
ȳ = e2sΦ̃L?

µ z̄, in Q,

ū = −s3ν3e2sΦ̃ z̄, in (0, T)×ω,

z̄ = 0, on (0, T)× {0, 1},
(2.51)

where L?
µ is the (formally) adjoint operator of Lµ.

Let us start by introducing the following linear space

P0 =
{

z ∈ C∞(Q) : z = 0 on (0, T)× {0, 1}
}

,

and introduce the bilinear form a:

a(z1, z2) =
∫∫

Q
e2sΦ̃L?

µz1L?
µz2 dx dt +

∫∫
Qω

s3ν3e2sΦ̃z1z2 dx dt, ∀ z1, z2 ∈ P0.

Then, if the functions ȳ and ū given by (2.51) satisfy the parabolic problem (2.50), we must
have

a(z̄, z) =
∫∫

Q
f z dx dt +

∫ 1

0
y0z(0) dx, ∀ z ∈ P0. (2.52)

The key idea in this proof is to show that there exists exactly one z̄ satisfying (2.52) in an
appropriate class. We will then define ȳ and ū using (2.51) and we will check that the couple
(ȳ, ū) fulfills the desired properties.

Observe that the modified Carleman inequality (2.41) holds for all z ∈ P0. Consequently,

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫∫
Q

νz2e2sϕ̃ dx dt ≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]a(z, z). (2.53)

In particular, a(·, ·) is a strictly positive and symmetric bilinear form, that is, a(·, ·) is a scalar
product in P0.

Denote by P the Hilbert space which is the completion of P0 with respect to the norm
associated to a(·, ·) (which we denote by ‖ · ‖P ). Let us now consider the linear form l, given
by

l(z) =
∫∫

Q
f z dx dt +

∫ 1

0
y0z(0) dx, ∀ z ∈ P .
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By the Cauchy–Schwarz inequality and in view of (2.53), we have that

|l(z)| ≤
∥∥∥∥ f

e−sϕ̃

√
ν

∥∥∥∥
L2(Q)

‖z
√

νesϕ̃‖L2(Q) + ‖y0e−sϕ̂(0)‖L2(0,1)‖z(0)esϕ̂(0)‖L2(0,1)

≤ Ces[ϕ̂(0)−ϕ̌( 5T
8 )]
(
‖ f e−sϕ̃‖L2(Q) + ‖y0e−sϕ̂(0)‖L2(0,1)

)
‖z‖P ,

and then l is a linear continuous form on P . Hence, in view of Lax–Milgram’s Lemma, there
exists one and only one z̄ ∈ P satisfying

a(z̄, z) = l(z), ∀ z ∈ P . (2.54)

Moreover, we have

‖z̄‖P ≤ Ces[ϕ̂(0)−ϕ̌( 5T
8 )]
(
‖ f e−sϕ̃‖L2(Q) + ‖y0e−sϕ̂(0)‖L2(0,1)

)
. (2.55)

Let us set
ȳ = e2sΦ̃L?

µ z̄ and ū = −1ωs3ν3e2sΦ̃ z̄. (2.56)

With these definitions and by (2.55), it is easy to check that ȳ and ū satisfy∫∫
Q

ȳ2e−2sΦ̃ dx dt +
∫∫

Qω

s−3ν−3ū2e−2sΦ̃ dx dt

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]
(
‖ f e−sϕ̃‖2

L2(Q) + ‖y0e−sϕ̂(0)‖2
L2(0,1)

)
,

(2.57)

which implies (2.48).
It remains to check that ȳ is the solution of (2.50) corresponding to ū. First of all, it is

immediate that ȳ ∈ Xs and ū ∈ L2(Q). Denote by ỹ the (weak) solution of (2.1) associated to
the control function u = ū, then ỹ is also the unique solution of (2.1) defined by transposition.
In other words, ỹ is the unique function in L2(Q) satisfying∫∫

Q
ỹh dx dt =

∫∫
Q

1ωūz dx dt +
∫∫

Q
f z dx dt +

∫ 1

0
y0z(0) dx, ∀ h ∈ L2(Q), (2.58)

where z is the solution to 
−zt − zxx − µ

x2 z = h, (t, x) ∈ Q,

z(t, 0) = z(t, 1) = 0, t ∈ (0, T),

z(T, x) = 0 x ∈ (0, 1).

According to (2.54) and (2.56), we see that ȳ also satisfies (2.58). Therefore, ȳ = ỹ. Conse-
quently, the control ū ∈ L2(ω× (0, T)) drives the state ȳ ∈ Xs exactly to zero at time T.

3 Singular heat equation with memory

Prior to null controllability is the well-posedness of problem (1.1). From the results in [23], we
recall that in the nonsingular case (µ = 0), it is well known that the heat operator with memory
gives rise to well-posed Cauchy–Dirichlet problems. Likewise in [23], by an application of the
Contraction Mapping Principle and invoking Theorem 2.1, we have that (1.1) is well-posed in
the following sense:
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Proposition 3.1. Assume that µ ≤ 1
4 . If y0 ∈ L2(0, 1) and u ∈ L2(Q), then there exists a unique

solution y of (1.1) such that

y ∈ C
(
[0, T]; L2(0, 1)

)
∩ L2(0, T; H1,µ

0 (0, 1)
)
.

Now, we pass to derive our main result, which concerns the null controllability of the sin-
gular heat equation with memory (1.1). Hence, in what follows, we assume that the function
a satisfies

e
4kscd

Tk(T−t)k a ∈ L∞((0, T)×Q), (3.1)

where c, d, k are the constants defined in (2.14) and s is the same of Theorem 2.7.

Remark 3.2. It is worth mentioning that, from the results in Guerrero and Imanuvilov [24],
it seems that the null controllability property of parabolic equations with memory may fail
without any additional conditions on the kernel. On the other hand, observe that the condition
(3.1) may appear as a quite strong restriction on the admissible function a, but it is a natural
one. Indeed, the only thing that we are asking is its integrability with respect to the Carleman
weight: it just restricts the function a very near T, which is due to the fact that the function ν

blows up only at t = T (see also [6]).

For our proof, we are going to employ a fixed point strategy. For R > 0, we define

Xs,R =
{

w ∈ Xs : ‖e−sΦ̃w‖L2(Q) ≤ R
}

,

which is a bounded, closed, and convex subset of L2(Q).
For any w ∈ Xs,R, let us consider the control problem

yt − yxx −
µ

x2 y =
∫ t

0
a(t, r, x)w(r, x) dr + 1ωu, (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1).

(3.2)

By Theorem 2.7 we first derive a null controllability result for (3.2); then, as a second step, we
will obtain the same controllability result for (1.1) applying Kakutani’s fixed point Theorem.

Our main result is thus the following.

Theorem 3.3. Assume that µ ≤ 1
4 . If the function a satisfies (3.1), then for any y0 ∈ H1,µ

0 (0, 1), there
exists a control function u ∈ L2(Q) such that the associated solution y ∈ Z of (1.1) satisfies

y(T, ·) = 0 in (0, 1). (3.3)

Proof. Setting C0 := 4kcd
Tk , by (3.1) and the estimate e−sϕ̃ ≤ e

sC0
(T−t)k , we get that

∫∫
Q

(
e−sϕ̃

∫ t

0
a(t, r, x)w(r, x) dr

)2

dx dt ≤ C
∫∫

Q

∫ t

0
e

2C0s
(T−t)k a2(t, r, x)w2(r, x) dr dx dt

≤ C
∫∫

Q
w2 dx dt ≤ C

(
sup(t,x)∈Q e2sΦ̃

) ∫∫
Q

e−2sΦ̃w2 dx dt ≤ CR2 < +∞.

(recall that w ∈ Xs,R). Thus, the result in Theorem 2.7 holds for the equation (3.2), i.e. for any
y0 ∈ H1,µ

0 (0, 1), there exists a control function u ∈ L2(Q) such that the associated solution y of
(3.2) is in Xs and

y(T, ·) = 0 in (0, 1).
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Let us now introduce, for every w ∈ Xs,R, the multivalued map

Λ : Xs,R ⊂ Xs → 2Xs

with

Λ(w) =

{
y ∈ Xs : for some u ∈ L2(Q) satisfying∫∫

Qω

s−3ν−3u2e−2sΦ̃ dx dt ≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]

(
R2 +

∫ 1

0
y2

0e−2sϕ̂(0) dx
)

y solves (3.2)
}

.

Observe that if y ∈ Λ(w), then y(T, ·) = 0 in (0, 1) via (2.47).
To achieve our goal, it will suffice to show that Λ possesses at least one fixed point. To this

purpose, we shall apply Kakutani’s fixed point Theorem (see [10, Theorem 2.3]).
It is readily seen that Λ(w) is a nonempty, closed and convex subset of L2(Q) for every

w ∈ Xs,R. Then, we prove that Λ(Xs,R) ⊂ Xs,R with sufficiently large R > 0. By (2.48) and
condition (3.1), and arguing as before we have∫∫

Q
y2e−2sΦ̃ dx dt +

∫∫
Qω

s−3ν−3u2e−2sΦ̃ dx dt

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]

(∫∫
Q

e−2sϕ̃

(∫ t

0
a(t, r, x)w(r, x) dr

)2

dx dt + e−2sϕ̂(0)
∫ 1

0
y2

0 dx

)

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]

(∫∫
Q

w2(t, x) dx dt + e−2sϕ̂(0)
∫ 1

0
y2

0 dx
)

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]
(

sup(t,x)∈Q e2sΦ̃
)(∫∫

Q
e−2sΦ̃(t,x)w2(t, x) dx dt

)
+ Ce−2sϕ̌( 5T

8 )
∫ 1

0
y2

0 dx.

By virtue of ϕ̂(0) ≤ Φ̂(0) and Φ̃ ≤ Φ̂(0) in Q, we get∫∫
Q

y2e−2sΦ̃ dx dt +
∫∫

Qω

s−3ν−3u2e−2sΦ̃ dx dt

≤ Ces[2ϕ̂(0)−2ϕ̌( 5T
8 )+2Φ̂(0)]

∫∫
Q

e−2sΦ̃(t,x)w2(t, x) dx dt + Ce−2sϕ̌( 5T
8 )
∫ 1

0
y2

0 dx

≤ Ces[4Φ̂(0)−2ϕ̌( 5T
8 )]R2 + Ce−2sϕ̌( 5T

8 )
∫ 1

0
y2

0 dx. (3.4)

Now, choosing the constant c (see (2.14)) in the interval(
e2ρ‖σ‖∞ − 1

d− 1
,

16
15

e2ρ‖σ‖∞ − eρ‖σ‖∞

d− 1

)
,

which is not empty for ρ sufficiently large, we have

2Φ̂(0)− ϕ̌

(
5T
8

)
=

(
4

T2

)k
[

2(eρ‖σ‖∞ − e2ρ‖σ‖∞) + cd
(

16
15

)k
]

<

(
4

T2

)k
(
−2 +

d
d− 1

(
16
15

)k+1
)
(e2ρ‖σ‖∞ − eρ‖σ‖∞).
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Therefore, taking the parameters d and k defined in (2.14) in such a way that d > 3 and
2 < k < ln(4/3)

ln(16/15) − 1, we infer that

2Φ̂(0)− ϕ̌(
5T
8
) < 0.

Hence for s sufficiently large, increasing the parameter s0 if necessary, we obtain∫∫
Q

y2e−2sΦ̃ dx dt +
∫∫

Qω

s−3ν−3u2e−2sΦ̃ dx dt ≤ 1
2

R2 + Ce−2sϕ̌( 5T
8 )
∫ 1

0
y2

0 dx.

Then, for s and R large enough, we obtain∫∫
Q

y2e−2sΦ̃ dx dt ≤ R2.

It follows that Λ(Xs,R) ⊂ Xs,R. Furthermore, let {wn} be a sequence of Xs,R. The regularity
assumption on y0 and Theorem 2.1, imply that the associated solutions {yn} are bounded in
H1(0, T; L2(0, 1)

)
∩ L2(0, T; D(A)

)
. Therefore, Λ(Xs,R) is a relatively compact subset of L2(Q)

by the Aubin–Lions Theorem [41].
In order to conclude, we have to prove that Λ is upper-semicontinuous under the L2

topology. First, observe that for any w ∈ Xs,R, we have at least u ∈ L2(Q) such that the
corresponding solution y ∈ Xs,R. Hence, taking {wn} a sequence in Xs,R, we can find a
sequence of controls {un} such that the corresponding solutions {yn} is in L2(Q). Thus, let
{wn} be a sequence satisfying wn → w in Xs,R and yn ∈ Λ(wn) such that yn → y in L2(Q). We
must prove that y ∈ Λ(w). For every n, we have a control un ∈ L2(Q) such that the system

yn,t − yn,xx −
µ

x2 yn =
∫ t

0
a(t, r, x)wn(r, x) dr + 1ωun, (t, x) ∈ Q,

yn(t, 0) = yn(t, 1) = 0, t ∈ (0, T),

yn(0, x) = y0(x), x ∈ (0, 1)

(3.5)

has a least one solution yn ∈ L2(Q) that satisfies

yn(T, ·) = 0 in (0, 1).

From Theorem 2.1 and (3.4), it follows (at least for a subsequence) that

un → u weakly in L2(Q),

yn → y weakly in H1(0, T; L2(0, 1)
)
∩ L2(0, T; D(A)

)
,

strongly in C(0, T; L2(0, 1)).

Passing to the limit in (3.5), we obtain a control u ∈ L2(Q) such that the corresponding
solution y to (3.2) satisfies (3.3). This shows that y ∈ Λ(w) and, therefore, the map Λ is
upper-semicontinuous.

Hence, the multivalued map Λ possesses at least one fixed point, i.e., there exists y ∈ Xs,R

such that y ∈ Λ(y). By the definition of Λ, this implies that there exists at least one pair (y, u)
satisfying the conditions of Theorem 3.3. The uniqueness of y follows by Proposition 3.1. This
ends the proof of Theorem 3.3.

As a consequence of the previous theorem one has the next result.
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Theorem 3.4. Assume that µ ≤ 1
4 . If the function a satisfies (3.1), then for any y0 ∈ L2(0, 1), there

exists a control function u ∈ L2(Q) such that the associated solution y ∈ W of (1.1) satisfies

y(T, ·) = 0 in (0, 1).

Proof. Consider the following singular parabolic problem:
wt − wxx −

µ

x2 w =
∫ t

0
a(t, r, x)w(r, x) dr, (t, x) ∈

(
0,

T
2

)
× (0, 1),

w(t, 0) = w(t, 1) = 0, t ∈
(

0,
T
2

)
,

w(0, x) = y0(x), x ∈ (0, 1),

where y0 ∈ L2(0, 1) is the initial condition in (1.1).
By Theorem 2.1, the solution of this system belongs to

W
(

0,
T
2

)
:= L2

(
0,

T
2

; H1,µ
0 (0, 1)

)
∩ C

([
0,

T
2

]
; L2(0, 1)

)
.

Then, there exists t0 ∈ (0, T
2 ) such that w(t0, ·) := w̃(·) ∈ H1,µ

0 (0, 1).
Now, we consider the following controlled parabolic system:

zt − zxx −
µ

x2 z =
∫ t

0
a(t, r, x)z(r, x) dr + 1ωh (t, x) ∈ (t0, T)× (0, 1),

z(t, 0) = z(t, 1) = 0, t ∈ (t0, T),

z(t0, x) = w̃(x), x ∈ (0, 1).

We start by observing that, since Theorem 3.3 holds also in a general domain (t0, T)× (0, 1)
with suitable changes, we can see that there exists a control function h ∈ L2((t0, T)× (0, 1))
such that the associated solution

z ∈ Z(t0, T) := L2(t0, T; D(A)) ∩ H1(t0, T; L2(0, 1)) ∩ C
(
[t0, T] ; H1,µ

0 (0, 1)
)

satisfies

z(T, ·) = 0 in (0, 1).

Finally, setting

y :=

{
w, in

[
0, t0

]
,

z, in
[
t0, T

] and u :=

{
0, in

[
0, t0

]
,

h, in
[
t0, T

]
,

one can prove that y ∈ W is the solution to the system (1.1) corresponding to u and satisfies

y(T, ·) = 0 in (0, 1).

Hence, our assertion is proved.
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4 Conclusions and perspectives

In this work, we have addressed the problem of null controllability for a class of one dimen-
sional heat equations with an inverse square potential and a memory type-kernel. Using
Carleman-based techniques and a fixed point argument, we have proved that under suitable
decaying conditions on the memory kernel, the null controllability of the system is ensured
by means of a distributed control.

In what follows, we highlight a few possible directions related with the topics addressed
in this work.
Memory-type null controllability of singular parabolic equation: This work addresses only
the null controllability property for system (1.1). It would be of interest to consider the prob-
lem of memory-type controllability (see [12] for the corresponding definition). The goal is then
not only to drive the solution to rest at some time-instant, but also to require the memory term
to vanish at the same time, ensuring that the whole process reaches the equilibrium. In the
spirit of previous results in [12, 31], it would be interesting to analyse this memory-type null
controllability problem for system (1.1), provided the support of the control moves, covering
the whole domain where the equation evolves.
Coupled singular parabolic systems with memory: Inspired by the results in [2, 26, 40], it
would be quite interesting to consider the null controllability of coupled system of parabolic
equations with singular potentials and memory effects, with less controls than equations (and
ideally only one control if possible).
Degenerate and singular parabolic equation with memory: In [1], the null controllability
for a one-dimensional degenerate heat equation is investigated. So, in this regard, following
the method of proof used in this paper (see also [1]), we think that it is possible to combine
the techniques in both papers and obtain a result for the degenerate/singular equation with
memory-type kernel.

5 Appendix

In this section, we recall a classical Carleman estimate for the following nonsingular heat
equation 

yt − yxx − by = f , (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1),

(5.1)

where b ∈ L∞(Q) and f ∈ L2(Q).
Following [22], we introduce the weight functions

Φ̃(t, x) := θ(t)(e−ρσ(x) − e2ρ‖σ‖∞) and φ(t, x) := θ(t)eρσ(x),

where θ, ρ and σ are defined in Subsection 2.2. Then, [22, Lemma 1.2] gives the following.

Lemma 5.1. There exists a positive constant ρ0 such that for an arbitrary ρ ≥ ρ0 there exists s0(ρ0) >

0 such that for each s ≥ s0(ρ0) the solutions of (5.1) satisfy the inequality∫∫
Q

(
sφv2

x + s3φ3v2) (e2sΦ + e2sΦ̃) dx dt

≤ C
(∫∫

Q
f 2(e2sΦ + e2sΦ̃) dx dt +

∫∫
Qω

s3φ3v2(e2sΦ + e2sΦ̃) dx dt
)

.
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Since 0 ≤ σ(x) ≤ ‖σ‖∞ , one has Φ̃ ≤ Φ and θ(t) ≤ φ(t, x) ≤ θ(t)eρ‖σ‖∞ for all (t, x) ∈ Q.
Hence, from Lemma 5.1 one can easily deduce the following result.

Corollary 5.2. There exists a positive constant ρ0 such that for an arbitrary ρ ≥ ρ0 there exists
s0(ρ0) > 0 such that for each s ≥ s0(ρ0) the solutions of (5.1) satisfy∫∫

Q

(
sθv2

x + s3θ3v2) e2sΦ dx dt ≤ C
(∫∫

Q
f 2e2sΦ dx dt +

∫∫
Qω

s3θ3v2e2sΦ dx dt
)

.

References

[1] B. Allal, G. Fragnelli, Controllability of degenerate parabolic equation with memory,
Math. Methods Appl. Sci., in press. https://doi.org/10.1002/mma.7342

[2] B. Allal, A. Hajjaj, L. Maniar, J. Salhi, Null controllability for singular cascade sys-
tems of n-coupled degenerate parabolic equations by one control force, Evol. Equ. Control.
Theory, appeared online. https://doi.org/10.3934/eect.2020080

[3] B. Allal, A. Hajjaj, L. Maniar, J. Salhi, Lipschitz stability for some coupled degenerate
parabolic systems with locally distributed observations of one component, Math. Control
Relat. Fields 10(2020), 643–667. https://doi.org/10.3934/mcrf.2020014; Zbl 07293648

[4] G. Amendola, M. Fabrizio, J. M. Golden, Thermodynamics of materials with mem-
ory: Theory and applications, Springer, New York, 2012. https://doi.org/10.1007/
978-1-4614-1692-0; Zbl 1237.80001

[5] V. Barbu, M. Iannelli, Controllability of the heat equation with memory, Differential
Integral Equations 13(2000), 1393–1412. Zbl 0990.93008

[6] U. Biccari, Boundary controllability for a one-dimensional heat equation with a singular
inverse-square potential, Math. Control Relat. Fields 9(2019), 191–219. https://doi.org/
10.3934/mcrf.2019011; Zbl 1423.35130

[7] U. Biccari, E. Zuazua, Null controllability for a heat equation with a singular inverse-
square potential involving the distance to the boundary function, J. Differential Equations
261(2016), 2809–2853. https://doi.org/10.1016/j.jde.2016.05.019; Zbl 1341.35085

[8] F. Bloom, Ill-posed problems for integro-differential equations in mechanics and electromagnetic
theory, SIAM Studies in Applied Mathematics, Vol. 3, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, Pa., 1981. https://doi.org/https://doi.org/10.
1137/1.9781611970890

[9] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New
York, 2011. https://doi.org/10.1007/978-0-387-70914-7

[10] E. Fernández-Cara, S. Guerrero, Global Carleman inequalities for parabolic systems
and applications to null controllability, SIAM J. Control Optim. 45(2006), 1395–1446.
https://doi.org/10.1137/S0363012904439696; Zbl 1428.93016

[11] C. Cazacu, Controllability of the heat equation with an inverse-square potential localized
on the boundary, SIAM J. Control Optim. 52(2014), 2055–2089. https://doi.org/10.1137/
120862557; Zbl 1303.35119

https://doi.org/10.1002/mma.7342
https://doi.org/10.3934/eect.2020080
https://doi.org/10.3934/mcrf.2020014
https://zbmath.org/?q=an:07293648
https://doi.org/10.1007/978-1-4614-1692-0
https://doi.org/10.1007/978-1-4614-1692-0
https://zbmath.org/?q=an:1237.80001
https://zbmath.org/?q=an:0990.93008
https://doi.org/10.3934/mcrf.2019011
https://doi.org/10.3934/mcrf.2019011
https://zbmath.org/?q=an:1423.35130
https://doi.org/10.1016/j.jde.2016.05.019
https://zbmath.org/?q=an:1341.35085
https://doi.org/https://doi.org/10.1137/1.9781611970890
https://doi.org/https://doi.org/10.1137/1.9781611970890
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.1137/S0363012904439696
https://zbmath.org/?q=an:1428.93016
https://doi.org/10.1137/120862557
https://doi.org/10.1137/120862557
https://zbmath.org/?q=an:1303.35119


22 B. Allal, G. Fragnelli and J. Salhi

[12] F. W. Chaves-Silva, X. Zhang, E. Zuazua, Controllability of evolution equations
with memory, SIAM J. Control Optim. 55(2017), 2437–2459. https://doi.org/10.1137/
151004239; Zbl 1368.93032

[13] E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced
Mathematics, Vol. 42, Cambridge University Press, Cambridge, 1995. https://doi.org/
10.1017/CBO9780511623721;

[14] S. Ervedoza, Control and stabilization properties for a singular heat equation with an
inverse-square potential, Comm. Partial Differential Equations 33(2008), 1996–2019. https:
//doi.org/10.1080/03605300802402633; Zbl 1170.35331

[15] G. Fragnelli, Interior degenerate/singular parabolic equations in nondivergence form:
well-posedness and Carleman estimates, J. Differential Equations 260(2016), 1314–1371.
https://doi.org/10.1016/j.jde.2015.09.019; Zbl 1331.35199

[16] G. Fragnelli, D. Mugnai, Control of degenerate and singular parabolic equation, BCAM
SpringerBriefs, in press, ISBN 978-3-030-69348-0.

[17] G. Fragnelli, D. Mugnai, Singular parabolic equations with interior degeneracy and
non smooth coefficients: the Neumann case, Discrete Contin. Dyn. Syst. Ser. S 13(2020),
1495–1511. https://doi.org/10.3934/dcdss.2020084; Zbl 1434.35264

[18] G. Fragnelli, D. Mugnai, Controllability of degenerate and singular parabolic problems:
the double strong case with Neumann boundary conditions, Opuscula Math. 39(2019),
207–225. https://doi.org/10.7494/OpMath.2019.39.2.207; Zbl 1428.35640

[19] G. Fragnelli, D. Mugnai, Controllability of strongly degenerate parabolic problems
with strongly singular potentials, Electron. J. Qual. Theory Differ. Equ. 2018, No. 50, 1–11.
https://doi.org/10.14232/ejqtde.2018.1.50; Zbl 1413.35426

[20] G. Fragnelli, D. Mugnai, Carleman estimates for singular parabolic equations with interior
degeneracy and non smooth coefficients, Adv. Nonlinear Anal. 6(2017), 61–84. https://
doi.org/10.1515/anona-2015-0163; Zbl 1358.35219

[21] X. Fu, J. Yong, X. Zhang, Controllability and observability of a heat equation with hy-
perbolic memory kernel, J. Differential Equations 247(2009), 2395–2439. https://doi.org/
10.1016/j.jde.2009.07.026; Zbl 1187.35265

[22] A. V. Fursikov, O. Y. Imanuvilov, Controllability of evolution equations, Lect. Notes Ser.,
Vol. 34, Seoul National University, Seoul, 1996. Zbl 0862.49004

[23] M. Grasselli, A. Lorenzi, Abstract nonlinear Volterra integro-differential equations
with nonsmooth kernels, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9)
Mat. Appl. 2(1991), 43–53. Zbl 0819.45006

[24] S. Guerrero, O. Yu. Imanuvilov, Remarks on non controllability of the heat equations
with memory, ESAIM Control Optim. Calc. Var. 19(2013) 288–300. https://doi.org/10.
1051/cocv/2012013; Zbl 1258.93026

[25] A. Hajjaj, Estimations de Carleman et applications à la contrôlabilité à zéro d’une classe
de systèmes paraboliques dégénérés, Thèse d’Etat, Marrakech, 2013.

https://doi.org/10.1137/151004239
https://doi.org/10.1137/151004239
https://zbmath.org/?q=an:1368.93032
https://doi.org/10.1017/CBO9780511623721
https://doi.org/10.1017/CBO9780511623721
https://doi.org/10.1080/03605300802402633
https://doi.org/10.1080/03605300802402633
https://zbmath.org/?q=an:1170.35331
https://doi.org/10.1016/j.jde.2015.09.019
https://zbmath.org/?q=an:1331.35199
https://doi.org/10.3934/dcdss.2020084
https://zbmath.org/?q=an:1434.35264
https://doi.org/10.7494/OpMath.2019.39.2.207
https://zbmath.org/?q=an:1428.35640
https://doi.org/10.14232/ejqtde.2018.1.50
https://zbmath.org/?q=an:1413.35426
https://doi.org/10.1515/anona-2015-0163
https://doi.org/10.1515/anona-2015-0163
https://zbmath.org/?q=an:1358.35219
https://doi.org/10.1016/j.jde.2009.07.026
https://doi.org/10.1016/j.jde.2009.07.026
https://zbmath.org/?q=an:1187.35265
https://zbmath.org/?q=an:0862.49004
https://zbmath.org/?q=an:0819.45006
https://doi.org/10.1051/cocv/2012013
https://doi.org/10.1051/cocv/2012013
https://zbmath.org/?q=an:1258.93026


Null controllability for a singular heat equation with a memory term 23

[26] A. Hajjaj, L. Maniar, J. Salhi, Carleman estimates and null controllability of degen-
erate/singular parabolic systems, Electron. J. Differential Equations 2016, No. 292, 1–25.
Zbl 1353.35186

[27] A. Halanay, L. Pandolfi, Approximate controllability and lack of controllability to zero
of the heat equation with memory, J. Math. Anal. Appl. 425(2015), 194–211. https://doi.
org/10.1016/j.jmaa.2014.12.021; Zbl 1302.93046

[28] A. Halanay, L. Pandolfi, Lack of controllability of the heat equation with memory, Sys-
tems Control Lett. 61(2012) 999–1002. https://doi.org/10.1016/j.sysconle.2012.07.
002; Zbl 1270.93016

[29] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2nd ed., Cambridge University
Press, Cambridge, 1952. Zbl 0047.05302

[30] S. Ivanov, L. Pandolfi, Heat equation with memory: lack of controllability to rest,
J. Math. Anal. Appl. 355(2009), 1–11. https://doi.org/10.1016/j.jmaa.2009.01.008;
Zbl 1160.93008

[31] K. Kunisch, D. A. Souza, On the one-dimensional nonlinear monodomain equations
with moving controls, J. Math. Pures Appl. 117(2018), 94–122. https://doi.org//10.
1016/j.matpur.2018.05.003; Zbl 1447.35190

[32] V. Lakshmikantham, M. Rama Mohana Rao, Theory of integro-differential equations, Sta-
bility and Control: Theory, Methods and Applications, Vol. 1, Gordon and Breach Science
Publishers, Lausanne, 1995. Zbl 0849.45004

[33] R. Lavanya, K. Balachandran, Null controllability of nonlinear heat equations with
memory effects, Nonlinear Anal. Hybrid Syst. 3(2009), 163–175. https://doi.org/10.
1016/j.nahs.2008.12.003; Zbl 1166.93004

[34] J. L. Lions, Optimal control of systems governed by partial differential equations, Springer-
Verlag, Berlin, 1971. Zbl 0203.09001

[35] J. L. Lions, Contrôle des systèmes distribués singuliers, Gauthier-Villars, Paris, 1983.
Zbl 0514.93001

[36] P. Martinez, J. Vancostenoble, The cost of boundary controllability for a parabolic
equation with inverse square potential, Evol. Equ. Control Theory 8(2019), 397–422. https:
//doi.org/10.3934/eect.2019020; Zbl 1425.93045

[37] L. Pandolfi, Linear systems with persistent memory: An overview of the biblography
on controllability, arXiv:1804.01865.

[38] J. Prüss, Evolutionary integral equations and applications, Monographs in Mathematics,
Vol. 87 Birkhäuser Verlag, Basel, 1993. https://doi.org/10.1007/978-3-0348-0499-8;
Zbl 0784.45006

[39] K. Sakthivel, K. Balachandran, B. R. Nagaraj, On a class of non-linear parabolic
control systems with memory effects, Internat. J. Control 81(2008), 764–777. https://doi.
org/10.1080/00207170701447114 ; Zbl 1152.93312

https://zbmath.org/?q=an:1353.35186
https://doi.org/10.1016/j.jmaa.2014.12.021
https://doi.org/10.1016/j.jmaa.2014.12.021
https://zbmath.org/?q=an:1302.93046
https://doi.org/10.1016/j.sysconle.2012.07.002
https://doi.org/10.1016/j.sysconle.2012.07.002
https://zbmath.org/?q=an:1270.93016
https://zbmath.org/?q=an:0047.05302
https://doi.org/10.1016/j.jmaa.2009.01.008
https://zbmath.org/?q=an:1160.93008
https://doi.org//10.1016/j.matpur.2018.05.003
https://doi.org//10.1016/j.matpur.2018.05.003
https://zbmath.org/?q=an:1447.35190
https://zbmath.org/?q=an:0849.45004
https://doi.org/10.1016/j.nahs.2008.12.003
https://doi.org/10.1016/j.nahs.2008.12.003
https://zbmath.org/?q=an:1166.93004
https://zbmath.org/?q=an:0203.09001
https://zbmath.org/?q=an:0514.93001
https://doi.org/10.3934/eect.2019020
https://doi.org/10.3934/eect.2019020
https://zbmath.org/?q=an:1425.93045
https://arxiv.org/abs/1804.01865
https://doi.org/10.1007/978-3-0348-0499-8
https://zbmath.org/?q=an:0784.45006
https://doi.org/10.1080/00207170701447114
https://doi.org/10.1080/00207170701447114
https://zbmath.org/?q=an:1152.93312


24 B. Allal, G. Fragnelli and J. Salhi

[40] J. Salhi, Null controllability for a singular coupled system of degenerate parabolic equa-
tions in nondivergence form, Electron. J. Qual. Theory Differ. Equ. 2018, No. 31, 1–28.
https://doi.org/10.14232/ejqtde.2018.1.31; Zbl 1413.35269

[41] J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl. 146(1986), 65–96.
https://doi.org/10.1007/BF01762360

[42] Q. Tao, H. Gao, On the null controllability of heat equation with memory, J. Math. Anal.
Appl. 440(2016) 1–13. https://doi.org/10.1016/j.jmaa.2016.03.036; Zbl 1333.93052

[43] J. Vancostenoble, Global non-negative approximate controllability of parabolic equa-
tions with singular potentials, in: F. Alabau-Boussouira, F. Ancona, A. Porretta, C.
Sinestrari (eds.), Trends in control theory and partial differential equations, Springer IN-
dAM Series, Vol. 32, Springer, Cham. https://doi.org/10.1007/978-3-030-17949-6_
13; Zbl 1423.35153

[44] J. Vancostenoble, Improved Hardy–Poincaré inequalities and sharp Carleman estimates
for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S 4(2011), 761–
790. https://doi.org/10.3934/dcdss.2011.4.761; Zbl 1213.93018

[45] J. Vancostenoble, E. Zuazua, Hardy inequalities, observability, and control for the wave
and Schrödinger equations with singular potentials, SIAM J. Math. Anal. 41(2009), 1508–
1532. https://doi.org/10.1137/080731396; Zbl 1200.35008

[46] J. Vancostenoble, E. Zuazua, Null controllability for the heat equation with singu-
lar inverse-square potentials, J. Funct. Anal. 254(2008), 1864–1902. https://doi.org/10.
1016/j.jfa.2007.12.015; Zbl 1145.93009

[47] J. L. Vazquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the
heat equation with an inverse-square potential, J. Funct. Anal. 173(2000), 103–153. https:
//doi.org/10.1006/jfan.1999.3556

[48] X. Zhou, H. Gao, Controllability of a class of heat equations with memory in one dimen-
sion, Math. Meth. Appl. Sci. 40(2017), 3066–3078. https://doi.org/10.1002/mma.4221;
Zbl 1369.93091

[49] X. Zhou, H. Gao, Interior approximate and null controllability of the heat equation with
memory, Comput. Math. Appl. 67(2014), 602–613. https://doi.org/10.1016/j.camwa.
2013.12.005; Zbl 1346.35079

https://doi.org/10.14232/ejqtde.2018.1.31
https://zbmath.org/?q=an:1413.35269
https://doi.org/10.1007/BF01762360
https://doi.org/10.1016/j.jmaa.2016.03.036
https://zbmath.org/?q=an:1333.93052
https://doi.org/10.1007/978-3-030-17949-6_13
https://doi.org/10.1007/978-3-030-17949-6_13
https://zbmath.org/?q=an:1423.35153
https://doi.org/ 10.3934/dcdss.2011.4.761
https://zbmath.org/?q=an:1213.93018
https://doi.org/10.1137/080731396
https://zbmath.org/?q=an:1200.35008
https://doi.org/10.1016/j.jfa.2007.12.015
https://doi.org/10.1016/j.jfa.2007.12.015
https://zbmath.org/?q=an:1145.93009
https://doi.org/10.1006/jfan.1999.3556
https://doi.org/10.1006/jfan.1999.3556
https://doi.org/10.1002/mma.4221
https://zbmath.org/?q=an:1369.93091
https://doi.org/10.1016/j.camwa.2013.12.005
https://doi.org/10.1016/j.camwa.2013.12.005
https://zbmath.org/?q=an:1346.35079

	Introduction
	Nonhomogeneous singular heat equation
	Functional framework and well-posedness
	Carleman estimates for a singular problem
	Null controllability result

	Singular heat equation with memory
	Conclusions and perspectives
	Appendix

