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Abstract. In this paper, we analyze the behavior of three-dimensional incompress-
ible flows, with small viscosities ν > 0, in the exterior of material obstacles ΩR =
Ω0 + (R, 0, 0), where Ω0 belongs to a class of smooth bounded domains and R > 0
is sufficiently large. Applying techniques developed by Kato, we prove an explicit en-
ergy estimate which, in particular, indicates the limiting flow, when both ν → 0 and
R → ∞, as that one governed by the Euler equations in the whole space. According to
this approach, it is natural to contrast our main result to that one already known in the
literature for families of viscous flows in expanding domains.
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1 Introduction

Let Ω0 ⊂ R3 be a smooth bounded domain, such that R3 \ Ω0 is connected and simply
connected. We also assume that 0 = (0, 0, 0) lies inside Ω0. For each R ≥ 0, let us set

R = (R, 0, 0), ΩR = Ω0 + R, ΠR = R3 \ΩR and ΓR = ∂ΩR = ∂ΠR.

Under these notation, we recall the definition of some usual spaces related to incompressible
fluids:

V(ΠR) = {v ∈ (H1(ΠR))
3 : div v = 0 in ΠR and v = 0 on ΓR} (1.1)

and

H(ΠR) = {v ∈ (L2(ΠR))
3 : div v = 0 in ΠR and v · n = 0 on ΓR}, (1.2)

where n is the outward directed unit normal vector field to ΓR.
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We fix an initial vorticity ω0, which is a smooth, divergence-free and compactly supported
vector field in R3. Since ΠR is simply connected, there exists a unique v0,R ∈ H(ΠR) such that
curl v0,R = ω0|ΠR (see Proposition 3.4). In addition, let us denote by u0 the velocity defined on
R3 which is associated to the vorticity ω0, as follows:

u0(x) =
−1
4π

∫
R3

(x− y)
|x− y|3 ×ω0(y)dy, (1.3)

for each x ∈ R3, where × represents the cross product of vectors in R3. In this context, there
exists T∗ > 0 with the following property: for all T ∈ (0, T∗), we can find a smooth solution
u = u(x, t) to the three-dimensional Euler equations in the whole space

ut + (u · ∇)u = −∇p,

div u = 0,

u(x, 0) = u0(x),

|u| → 0 as |x| → +∞,

(1.4)

defined on R3× [0, T]. In (1.4), u is understood as the velocity of an ideal incompressible fluid,
while p denotes its pressure.

Taking T ∈ (0, T∗) and a small viscosity ν > 0, let us also consider the incompressible
Navier–Stokes equations in ΠR, with initial data v0,R, given by

vν,R
t + (vν,R · ∇)vν,R − ν∆vν,R +∇Pν,R = 0, (x, t) ∈ ΠR × (0, T),

div vν,R = 0, (x, t) ∈ ΠR × [0, T),

vν,R(x, t) = 0, (x, t) ∈ ∂ΠR × (0, T),

vν,R(x, 0) = v0,R(x), x ∈ ΠR.

(1.5)

Above, vν,R represents the velocity of the particles of a viscous fluid and Pν,R is its pressure.
It is well-known that there exists a Leray–Hopf weak solution vν,R = vν,R(x, t) to (1.5) (see
Definition 4.1 and Theorem 4.2). We emphasize that, since we consider weak solutions to
(1.5), there is no dependence of solution’s existence time on the viscosity. Under all these
notations we have just described, we are ready to state the main result of this paper.

Theorem 1.1. As mentioned previously, let ω0 ∈ (C∞
c (R3))3 be a divergence-free vector field in

R3, and consider the smooth solution u = u(x, t) of (1.4), defined on R3 × [0, T], with initial data
given in (1.3). For ν > 0 and R > 0, let vν,R be a weak solution of (1.5) in ΠR × [0, T), with
initial data v0,R, where v0,R is the L2-orthogonal projection of u0|ΠR on H(ΠR). Then, there exist
C = C(T, Ω0, ω0) > 0 and R0 > 0 such that, for all R > R0, we have

‖vν,R − u‖L∞([0,T];[L2(ΠR)]3) ≤ C
(

1
R
+
√

ν

)
. (1.6)

At this moment, we would like to list some papers where asymptotic behavior of incom-
pressible flows under singular domain perturbation has been considered. Initially, we recall
the study of incompressible flows in the presence of small obstacles, presented in [7] and [6].
In [7], it was investigated the asymptotic behavior of 2D incompressible ideal flows in the ex-
terior of a single smooth obstacle that shrinks homothetically to a point. The work developed
in [7] allowed to identify the equation satisfied by the limit flow. In fact, if γ is the circula-
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tion around the obstacle and γ = 0, then the limit velocity verifies the Euler equations in the
full-plane, with the same initial vorticity. On the other hand, when γ 6= 0, the limit equation
involves a new forcing term, with an initial vorticity that acquires a pointwise Dirac mass. In
a similar analysis for the 2D Navier–Stokes equations, considered in [6], it was proved that, if
the circulation is sufficiently small, then the limit equation is the Navier–Stokes equations in
the whole space, but an additional pointwise Dirac mass still appears in the vorticity of the
limit equation. In [4], the corresponding problem was considered in the three-dimensional
case, where it was established that the limit velocity is a solution of the Navier–Stokes equa-
tions in the full-space. Later, in [1], the research proceeded with the asymptotic behavior of
solutions of the incompressible 2D Euler equations on a bounded domain with a finite num-
ber of holes, assuming that the size of one of them vanishes. In that situation, the limit flow
was identified as a modified Euler system in the domain without its small hole.

In [5], incompressible flows around a small obstacle, with small viscosity, are considered.
Under specific assumptions, it can be seen that solutions of the Navier–Stokes system in exte-
rior domains converge to solutions of the Euler system in the full space when both viscosity
and the size of the obstacle vanish. In the proof of this result, it is presented a rate of conver-
gence in terms of the viscosity and the size of the obstacle. In addition, the complementary
situation was treated in [9], where 2D Euler and Navier–Stokes systems were analyzed in
expanding domains. To be more precise, such asymptotic analysis also pointed out that solu-
tions in large domains converge to the corresponding solution in the full plane.

As we can see, in the context of fluid dynamics, limits of singularly perturbed domain
have been extensively studied over the last years. Last but not least, we would like to high-
light [10], where Kelliher, Lopes Filho and Nussenzveig Lopes examined, in dimensions 2
and 3, the limiting behavior of incompressible flows with small viscosity inside expanding
domains. Based on energy estimates developed by Kato in [8], these three authors identified
conditions under which the limit velocity satisfies the Euler system in the whole space when
both viscosity vanishes and the domain becomes large. We are supposed to remark that their
analysis also exhibits a rate of convergence which takes into account the small viscosity of the
fluid and the enlarged boundary domain. The current work intends to be part of the list of
papers we have just mentioned. However, our purpose here is closer to [10]. In fact, we study,
in dimension 3, the limiting behavior of incompressible flows, with small viscosity, around far
obstacles. In this sense, here the boundary domain becomes distant through the translation of
Γ0 = ∂Π0 by R = (R, 0, 0), while, in [10], the boundary goes far by dilatation. In both cases,
there is some effect of distant boundaries in the vanishing viscosity limit. Thus, Theorem 1.1
should be contrasted with the corresponding three-dimensional main result of [10].

The remainder of this paper is organized as follows: in Section 2, we deal with the be-
havior of smooth solutions of (1.4) at infinity. In Section 3, we set some suitable approximate
solutions to the Euler equations and, applying the decay results obtained in Section 2, some
indispensable estimates are achieved in Propositions 3.3 and 3.4. Section 4 is devoted to a brief
discussion about the Navier–Stokes in exterior domains. At this point, we must emphasize
Proposition 4.5, where a well-known relation involving weak solutions to (4.1) is extended to
a larger class of test vector fields. In Section 5 we prove Theorem 1.1, our main result. In
Section 6, we make further comments about some aspects related to this work. At the end,
for the sake of clarity, there is an appendix, where we list domains, differential operators,
function spaces and notations related to the PDEs mentioned throughout the development of
this work.
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2 Incompressible inviscid flow in the whole space

At the beginning of this section, we would like to have a few words on the local well-posedness
for the 3D Euler system in the whole space. As said before, we fix an initial vorticity ω0 ∈
(C∞

c (R3))3, which is divergence-free, and take the associated velocity u0, expressed in (1.3).
Under these assumptions, it was proved in [12] that, for sufficiently small times, there exists
a smooth solution of (1.4), with u0 as the initial data. It means that there exists T∗ > 0,
depending on u0, such that, for all T ∈ (0, T∗), there exists a unique smooth solution (u, p) of
(1.4), defined on R3 × [0, T].

Additionally, for each t ∈ [0, T], the vector field ω = curl(u(·, t)) is compactly supported
and there exists r > 0 such that

supp(ω(u)) ⊂ Br(0)× [0, T] (2.1)

what can be seen in [10], for example. It is important to notice that ω and u solve the system
ωt + (u · ∇)ω = (ω · ∇)u, (x, t) ∈ R3 × (0, T),

div ω = 0, (t, x) ∈ R3 × [0, T],

ω = curl u, (x, t) ∈ R3 × [0, T],

(2.2)

and, due to the second PDE in (2.2), it is true that u = curl Ψ, where Ψ is the vector-valued
stream function given by

Ψ(x, t) =
−1
4π

∫
R3

ω(y, t)
|x− y|dy. (2.3)

As a consequence, for all (x, t) ∈ R3 × [0, T], u can be recovered from ω throughout the
Biot–Savart law

u(x, t) =
−1
4π

∫
R3

(x− y)
|x− y|3 ×ω(y, t)dy, (2.4)

which we had already stated in (1.3), for t = 0.
In the rest of this section, we will focus our attention on the behavior of the smooth solution

(u, p) of (1.4) at infinity.

Lemma 2.1. Let Φ = (Φ1, Φ2, Φ3) ∈ (C∞(R3))3 be a compactly supported vector field and consider
M > 0 such that supp Φ ⊂ B̄M(0). Then, there exists C > 0 such that, for any x ∈ R3 \ B2M(0), we
have ∣∣∣∣∫

R3

Φ(y)
|x− y|dy− 1

|x|

∫
R3

Φ(y)dy
∣∣∣∣ ≤ C
|x|2 . (2.5)

Additionally, if
∫

R3 Φ(y)dy = 0, then the inequality∣∣∣∣∫
R3

(x− y)
|x− y|3 ×Φ(y)dy

∣∣∣∣ ≤ C
|x|3 (2.6)

also holds.

Proof. We start proving (2.6). Consider the vector field g = (g1, g2, g3) ∈ (C∞(R3 \ {0}))3,
given by g(x) = x

|x|3 for each x ∈ R3 \ {0}. Let us take x ∈ R3 \ B2M(0) and y ∈ B̄M(0). Since

{(1− t)x + t(x− y) : t ∈ [0, 1]} ⊂ R3 \ {0},
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applying the mean value theorem, we obtain θi ∈ (0, 1) such that

gi(x− y) = gi(x) + Dgi(x− θiy)(−y),

where i ∈ {1, 2, 3}. Using that
∫

R3 Φ(y)dy = 0 and |x− θiy| ≥ |x| − θi|y| ≥ |x| − |x|2 = |x|
2 , we

easily check that∣∣∣∣∫
R3

[
(xi − yi)

|x− y|3 Φj(y)−
(xj − yj)

|x− y|3 Φi(y)
]

dy
∣∣∣∣

≤
∣∣∣∣∫B̄M(0)

Dgi(x− θiy)(−y)Φj(y)dy
∣∣∣∣+ ∣∣∣∣∫B̄M(0)

Dgj(x− θjy)(−y)Φi(y)dy
∣∣∣∣

≤ C
(∫

B̄M(0)

|Φj(y)|
|x− θiy|3

dy +
∫

B̄M(0)

|Φi(y)|
|x− θjy|3

dy
)
≤ C
|x|3 ,

for all i, j ∈ {1, 2, 3}. From this, (2.6) follows.
The proof of (2.5) is analogous, but the condition

∫
R3 Φ(y)dy = 0 is not required. In fact,

we can find λ ∈ (0, 1) such that∣∣∣∣∫
R3

Φ(y)
|x− y|dy− 1

|x|

∫
R3

Φ(y)dy
∣∣∣∣= ∣∣∣∣∫B̄M(0)

(x− λy) · y
|x− λy|3 Φ(y)dy

∣∣∣∣≤ ∫B̄M(0)

M|Φ(y)|
|x− λy|2 dy≤ C

|x|2 ,

following the desired conclusion.

Next, we apply Lemma 2.1 in order to state the decay of u and its derivatives, as |x| → ∞.

Proposition 2.2. Consider u and ω as mentioned above and take M > 0 such that supp(ω(·, t)) ⊂
B̄M(0) for all t ∈ [0, T]. Then, there exists C > 0 such that

|u(x, t)| ≤ C
|x|2 , |ut(x, t)| ≤ C

|x|3 and |∇u(x, t)| ≤ C
|x|3 , (2.7)

for all (x, t) ∈ (R3 \ B̄2M(0))× [0, T].

Proof. During this proof, suppose that (x, t) ∈ (R3 \ B̄2M(0))× [0, T] is fixed. Thus, we easily
get

|u(x, t)| =
∣∣∣∣ 1
4π

∫
R3

(x− y)
|x− y|3 ×ω(y, t)dy

∣∣∣∣ ≤ ( 1
π

∫
B̄M(0)

|ω(y, t)|dy
)

1
|x|2 ≤

C
|x|2 .

For the second desired estimate, we use (2.2) and (2.4) in order to obtain

ut(x, t) =
−1
4π

∫
B̄M(0)

(x− y)
|x− y|3 × [(ω · ∇)u− (u · ∇)ω](y, t)dy.

Recalling that u and ω are two divergence-free vector fields, we take∫
R3
[(ω · ∇)u− (u · ∇)ω](y, t) = 0.

Hence, applying the inequality (2.6) from Lemma 2.1, we have

|ut(x, t)| ≤ C
|x|3 .
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In the last part of this proof, we will estimate ∇u = [∂iuj]
3
i,j=1. Notice that, if 0 < ε < M

and y ∈ BM(0), we clearly get |x− y| ≥ |x|
2 > M > ε for all y ∈ B̄M(0). Consequently, for any

3× 1 matrix B, we take

|[∇u(x, t)]B| = lim
ε→0

∣∣∣∣∫|y−x|≥ε

(
ω(y, t)× B
4π|x− y|3 +

3{[(x− y)×ω(y, t)]⊗ (x− y)}B
4π|x− y|5

)
dy
∣∣∣∣

≤
∫

B̄M(0)

∣∣∣∣ω(y, t)× B
4π|x− y|3 +

3{[(x− y)×ω(y, t)]⊗ (x− y)}B
4π|x− y|5

∣∣∣∣ dy

≤
(

1
4π

∫
B̄M(0)

|ω(y, t)|
|x− y|3 dy

)
|B|

≤ C
|x|3 |B|,

where h⊗ k denotes the 3× 3 matrix [hik j]
3
i,j=1 for each h, k ∈ R3. It completes the proof.

In the next two results, we will specify the decay of the scalar pressure p, given in (1.4), as
|x| → ∞.

Lemma 2.3. Let (u, p) be the solution of (1.4) and consider ȳ ∈ R3 \ {0}. The following properties
hold:

(a) There exists C > 0 such that

|∇p(x, t)| ≤ C
|x|3

for any (x, t) ∈ (R3 \ {0})× [0, T].

(b) For each t ∈ [0, T], there exists
L(t) = lim

θ→∞
p(θȳ, t).

Proof. The pointwise estimate for ∇p comes immediately from Proposition 2.2.
Let us prove the second part of the result. Let (θn)∞

n=1 be a sequence of positive real
numbers which tends to infinity. Since

|p(θmȳ, t)− p(θnȳ, t)| =
∣∣∣∣∫ θm

θn

∇p(sȳ, t) · ȳds
∣∣∣∣ ≤ C

2|ȳ|2

∣∣∣∣ 1
θ2

n
− 1

θ2
m

∣∣∣∣ (2.8)

for all positive integers m and n, we conclude that, for each t∈ [0, T], the sequence (p(θnȳ, t))∞
n=1

converges as n → ∞. Analogously, if (λn)∞
n=1 is another sequence of positive real numbers

which tends to infinity, we take

|p(θnȳ, t)− p(λnȳ, t)| ≤ C
2|ȳ|2

∣∣∣∣ 1
θ2

n
− 1

λ2
n

∣∣∣∣
for all positive integers m and n, and t ∈ [0, T]. It means that there exists limθ→∞ p(θȳ, t), as
desired.

Next, we will see that Lemma 2.3 allows us to collect some properties of the pressure p.

Proposition 2.4. Let (u, p) be the solution (1.4) and consider ȳ, z̄ ∈ R3 \ {0}. Then

(a) limθ→∞ p(θȳ, t) = limθ→∞ p(θz̄, t) for each t ∈ [0, T];
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(b) there exists a continuous function p∞ : [0, T] −→ R and C > 0 such that

|p(x, t)− p∞(t)| ≤
C
|x|2 (2.9)

for all (x, t) ∈ (R3 \ {0})× [0, T].

Proof. Firstly, let us focus on the proof of (a). Without loss of generality, we can assume that
z̄ /∈ Rȳ and |ȳ| ≥ |z̄|. Take θ > 0 and consider the sphere

S = {x ∈ R3 : |x| = θ|z̄|}.

Let σ : [s1, s2] ⊂ [0, 2π] −→ S be the geodesic on S from θz̄ to q = θ|z̄|
|ȳ| ȳ, given by

σ(s) = (sin s)q + (cos s)θ|z̄|v,

where v belongs to the tangent plane to S at q. Thus, from Lemma 2.3, we obtain

|p(θȳ, t)− p(θz̄, t)| ≤ |p(θȳ, t)− p(q)|+ |p(q)− p(θz̄, t)|

=

∣∣∣∣∫ s2

s1

∇p(σ(s)) · σ′(s)ds
∣∣∣∣+
∣∣∣∣∣
∫ θ

θ|z̄|
|ȳ|

∇p(sȳ) · ȳds

∣∣∣∣∣ ≤
[

2πC
|z̄|2 +

C
2|ȳ|

(
|ȳ|2
|z̄|2 − 1

)]
1
θ2 .

Therefore, limθ→∞ p(θȳ, t) = limθ→∞ p(θz̄, t) for each t ∈ [0, T].
Secondly, we must prove the part (b). Let us set the scalar function p∞ : [0, T] −→ R by

p∞(t) = limθ→∞ p(θȳ, t). Arguing as in (2.8), we easily check that,

|p(x, t)− p∞(t)| = lim
θ→∞
|p(x, t)− p(θx, t)| ≤ lim

θ→∞

C
|x|2

(
1− 1

θ2

)
=

C
|x|2 .

This completes the proof of Proposition 2.4.

In the last result of this section, we will make use of Propositions 2.2 and 2.4 in order to
describe how the stream vector field Ψ behaves at infinity.

Proposition 2.5. Let (u, p) be the solution of (1.4) and Ψ be the associated stream vector field given in
(2.3). Consider M > 0 such that supp(ω(·, t)) ⊂ B̄M(0) for all t ∈ [0, T]. Then, there exists C > 0
such that

|Ψ(x, t)| ≤ C
|x| , |Ψt(x, t)| ≤ C

|x|2 and |∇Ψ(x, t)| ≤ C
|x|2 , (2.10)

for all (x, t) ∈ (R3 \ B̄2M(0))× [0, T].

Proof. The first inequality in (2.10) is straightforward. Now, take (x, t) ∈ (R3 \ B̄2M(0))× [0, T].
Since

Ψt(x, t) =
1

4π

∫
B̄M(0)

(ω · ∇)u− (u · ∇)ω
|x− y| (y, t)dy

and
∫

R3 [(ω · ∇)u − (u · ∇)ω](y, t) = 0, the inequality (2.5) gives us the second estimate in
(2.10). Finally, for each i ∈ {1, 2, 3}, we notice that

|∂iΨ(x, t)| =
∣∣∣∣ 1
4π

∫
B̄M(0)

xi − yi

|x− y|3 ω(y, t)dy
∣∣∣∣ ≤ ∫B̄M(0)

|ω(y, t)|
|x− y|2 dy,

and thus the third estimate in (2.10) also holds.
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3 Approximate inviscid solutions

Firstly, let us recall some notations given in Section 2. Consider ω0 ∈ (C∞
c (R3))3 and let (u, p)

be the smooth solution of (1.4) in R3 × [0, T], with initial data

u0 = u0(x) =
−1
4π

∫
R3

x− y
|x− y|3 ×ω0(y)dy. (3.1)

Also, let Ψ be the stream vector field associated to u, given in (2.3).
In this section, we intend to approximate the solution u by an appropriate net (uR)R>0 of

divergence-free vector fields. Suppose that Ω̄0 ∪ supp ω(·, t) ⊂ BM0(0) for all t ∈ [0, T], where
M0 > 0, and let us take χ ∈ C∞(R) satisfying 0 ≤ χ ≤ 1, χ ≡ 1 in R \ (−2M0, 2M0), and
χ ≡ 0 in [−M0, M0]. For each R > 0, let us set χR(x) = χ(|x−R|) and

uR(x, t) := curl(χR(Ψ + CR)) = ∇χR × (Ψ + CR) + χRu, (3.2)

where (x, t) ∈ R3 × [0, T] and CR = −1
4πR

∫
R3 ω0(y)dy. Clearly, each uR is a smooth and

divergence-free vector field in R3, which vanishes in the neighborhood of ΓR = ∂(ΩR), where
ΩR = Ω0 + R. Besides, taking

p = p− p∞, (3.3)

where the function p∞ : [0, T] −→ R was obtained in Proposition 2.4, we also have

uR
t = ∇χR ×Ψt − χR(u · ∇)u− χR∇ p̄ (3.4)

in ΠR × (0, T), recalling that ΠR = R3 \ΩR.
Next, we will prove some important estimates involving (uR)R>0, which will allow us to

obtain Theorem 1.1.

Lemma 3.1. Let us consider Ψ, CR and M0 > 0 as mentioned at the beginning of this section. Then
there exist C > 0 and R0 > 0 such that

sup
|y|∈[M0,2M0]

|Ψ(y + R, t) + CR| ≤
C
R2 (3.5)

for all R > R0 and t ∈ [0, T].

Proof. Firstly, we observe that, for all x1, x2 ∈ R3 \ {0} satisfying |x1| ≥ 2|x2|, we can apply
the mean value theorem in order to obtain∣∣∣∣ 1

|x1 − x2|
− 1
|x1|

∣∣∣∣ ≤ 4|x2|
|x1|2

. (3.6)

Let us fix y ∈ R3 such that |y| ∈ [M0, 2M0]. Since
∫

R3 ω(z, t)dz =
∫

R3 ω0(z)dz, for any
t ∈ [0, T], we have

|Ψ(y + R, t) + CR| =
∣∣∣∣ 1
4π

∫
R3

ω(z, t)
|(y + R)− z|dz− 1

4πR

∫
R3

ω0(z)dz
∣∣∣∣

≤
∣∣∣∣ 1
4π

∫
R3

ω(z, t)
|(y + R)− z|dz− 1

4π|y + R|

∫
R3

ω(z, t)dz
∣∣∣∣

+
1

4π

∣∣∣∣ 1
|y + R| −

1
|R|

∣∣∣∣ ∫
R3
|ω0(z)|dz

=: A + B.
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Taking R0 = 4M0, it is clear that, if z ∈ BM0(0) and R > R0, then |(y + R)− z| ≥ R− 3M0 > 0
and |y + R| ≥ R− 2M0 > 0. As a consequence,

A ≤ 1
4π

∫
BM0 (0)

∣∣∣∣ 1
|(y + R)− z| −

1
|y + R|

∣∣∣∣ |ω(z, t)|dz

≤ 1
4π

∫
BM0 (0)

|z|
|(y + R)− z||y + R| |ω(z, t)|dz

≤ C
(R− 3M0)2

≤ C
R2 .

for all R > R0. Finally, applying (3.6) with x1 = −R and x2 = y, we also obtain

B ≤ |y|
πR2

∫
BM0 (0)

|ω0(z)|dz ≤ C
R2

for R > R0. Hence, (3.5) follows.

Remark 3.2. The estimates proved in Propositions 2.2 and 2.5 are valid for any (x, t) ∈ (R3 \
{0})× [0, T].

Proposition 3.3. Under the previous notation, there exist two constants C = C(Ω0, T) > 0 and
R0 > 0 such that, for all R > R0, we have:

(a) ‖uR − u‖L∞([0,T];L2(ΠR)) + ‖u
R − χRu‖L∞([0,T];L2(ΠR)) ≤ C/R2;

(b) ‖∇uR −∇u‖L∞([0,T];L2(ΠR)) ≤ C/R2;

(c) ‖ p̄∇χR‖L∞([0,T];L2(ΠR)) + ‖∇χR ×Ψt‖L∞([0,T];L2(ΠR)) ≤ C/R2;

(d) ‖uR‖L∞([0,T];L∞(ΠR)) + ‖∇uR‖L∞([0,T];L∞(ΠR)) + ‖∇uR‖L∞([0,T];L2(ΠR)) ≤ C.

Proof. ESTIMATE (a): In the first place, using (3.2) and (3.5), we get

‖uR(·, t)− χRu(·, t)‖2
L2(ΠR)

= ‖∇χR × (Ψ + CR)‖2
L2(ΠR)

=
∫
|x−R|∈[M0,2M0]

|χ′(|x−R|)|2|Ψ(x, t) + CR|2dx

=
∫
|y|∈[M0,2M0]

|χ′(|y|)|2|Ψ(y + R, t) + CR|2dy

≤ C sup
|y|∈[M0,2M0]

|Ψ(y + R, t) + CR|2

≤ C
R4 (3.7)

for all t ∈ [0, T] and R > 0 sufficiently large. On the other hand, recalling Proposition 2.2, we
also obtain
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‖(χR − 1)u(·, t)‖2
L2(ΠR)

=
∫

B2M0 (R)∩ΠR

|χ(|x−R|)− 1|2|u(x, t)|2dx

=
∫

B2M0 (0)∩Π0

|χ(|y|)− 1|2|u(y + R, t)|2dy

≤ C
∫

B2M0 (0)∩Π0

|χ(|y|)− 1|2
|y + R|4 dy

≤ C
(R− 2M0)4

≤ C
R4 (3.8)

for all t ∈ [0, T] and R > 0 sufficiently large. As a result, desired estimate holds.

ESTIMATE (b): From (3.2), we know that

∂iuR − ∂iu = ∂i(∇χR)× (Ψ + CR) +∇χR × ∂iΨ + (∂iχ
R)u + (χR − 1)∂iu.

Hence, using Propositions 2.2 and 2.5, and Lemma 3.1, we can argue as in (3.7) and (3.8) in
order to prove that

‖∇uR −∇u‖L∞([0,T];L2(ΠR)) ≤ CR−2

for all R > 0 sufficiently large.

ESTIMATE (c): The proof of the third desired estimate is very similar to the last ones. In fact,
it is a consequence of (2.9) and (2.10), given in Propositions 2.4 and 2.5, respectively.

ESTIMATE (d): Let us prove the last estimate. Since the inviscid velocity u is a smooth vector
field, Proposition 2.2 assures that ‖∇uR‖L∞([0,T];L2(ΠR)) ≤ C for R > 0 is sufficiently large.
Finally, for all i ∈ {1, 2, 3}, it is clear that

|χR(x)|+ |∂iχ
R(x)|+ |∂i∂jχ

R(x)| ≤ C,

for all x ∈ R3 and R > 0. It implies that ‖uR‖L∞([0,T];L∞(ΠR)) and ‖∇uR‖L∞([0,T];L∞(ΠR)) are
uniformly bounded with respect to R > 0. This ends the proof.

Next, we prove the last result of this section, which yields a suitable convergence related
to the initial data.

Proposition 3.4. As before, let ω0 ∈ (C∞
c (R3))3 be a divergence-free vector field and consider the

initial velocity u0 as in (3.1). Then, for each R > 0, there exists a unique v0,R ∈ H(ΠR) such that
curl v0,R = ω0|ΠR . In addition, there exist C > 0 and R0 > 0 such that

‖ṽ0,R − u0‖L2(R3) ≤
C
R2 (3.9)

for all R > R0, where ṽ0,R vanishes on ΩR and equals v0,R on ΠR.

Proof. For each R > 0, the existence of exactly one vector field v0,R ∈ H(ΠR) satisfying
curl v0,R = ω0|ΠR was given in [4], where the authors have used the Leray–Helmholtz–Weyl
orthogonal decomposition as well as the simple connectedness of ΠR.

In order to prove (3.9), we observe that

‖u0|ΠR − v0,R‖L2(ΠR) ≤ ‖u0|ΠR − w‖L2(ΠR)
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for all w ∈ H(ΠR). In particular, taking w(x) = uR(x, 0), where x ∈ R3, and applying
Proposition 3.3, we obtain

‖ṽ0,R − u0‖2
L2(R3) = ‖v0,R − u0|ΠR‖2

L2(ΠR)
+ ‖u0‖2

L2(Ω̄R)

≤ ‖u0|ΠR − uR(·, 0)‖2
L2(ΠR)

+ ‖u0‖2
L2(Ω̄R)

≤ C
R4 + ‖u0‖2

L2(Ω̄R)
,

for all R > 0 sufficiently large. Besides, taking R > 2M0, we observe that Ω̄R ∩ supp ω0 = ∅.
As a consequence, for any x ∈ ΩR and y ∈ supp ω0, we have

|x− y| ≥ R− |y| − |x−R| ≥ R− 2M0 > 0.

Therefore,

‖u0‖2
L2(Ω̄R)

≤ C
∫

BM0 (0)

|ω0(y)|2
|x− y|4 dydx ≤ C

(R− 2M0)4 ≤
C
R4 ,

and (3.9) holds.

4 Leray–Hopf solutions in exterior domains

Throughout this section, let Π = R3 \Ω ⊂ R3 be a smooth exterior domain, which means that
Ω is a smooth compact set in R3. Given T > 0 and v0 ∈ H(Π), we consider the Navier–Stokes
system 

vt + (v · ∇)v− ν∆v +∇P = 0, (x, t) ∈ Π× (0, T),

div v = 0, (x, t) ∈ Π× [0, T),

v(x, t) = 0, (x, t) ∈ ∂Π× (0, T),

v(x, 0) = v0(x), x ∈ Π,

(4.1)

where v = v(x, t) is the velocity field evaluated at the point x ∈ Π and at the time t ∈ [0, T],
P = P(x, t) is the related scalar pressure field, and ν > 0 is the kinematic viscosity.

Definition 4.1. Under the notation above, a measurable vector field

v ∈ L2(0, T; V(Π)) ∩ L∞(0, T; H(Π))

is said to be a weak solution of (4.1) in Π× [0, T) if, for any Φ ∈ DT(Π), we have∫ T

0

∫
Π
[v ·Φt − ν(∇v · ∇Φ)− (v · ∇)v ·Φ](x, t)dxdt = −

∫
Π

v0 ·Φ(x, 0)dx. (4.2)

The next result assures the existence of a weak solution to (4.1) satisfying a very important
additional estimate, which is called a Leray–Hopf solution of (4.1).

Theorem 4.2. Given T > 0 and v0 ∈ H(Π), the system (4.1) there exists a weak solution v :
Π× [0, T) −→ R3 which satisfies the energy estimate

‖v(·, t)‖2
L2(Π) + 2ν

∫ t

0
‖∇v(·, τ)‖2

L2(Π)dτ ≤ ‖v0‖2
L2(Π) (4.3)

for all t ∈ [0, T]
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Proof. The proof of this result can be found in [2].

Remark 4.3. Taking T > 0 and v0 ∈ H(Π), let us consider a weak solution v : Π× [0, T) −→
R3 of (4.1). It is known that, for any Φ ∈ D(Π× [0, T)), v satisfies∫

Π
(v ·Φ)(x, t)dx−

∫
Π
(v ·Φ)(x, 0)dx

=
∫ t

0

∫
Π
[v ·Φt − ν(∇v · ∇Φ)− (v · ∇)v ·Φ](x, τ)dτ (4.4)

for all t ∈ [0, T) (see [3], for instance).
Later, we will apply the relation (4.4) replacing Φ by each approximate inviscid solutions

uR, where R > 0. For this reason, we are supposed to prove that (4.4) remains valid when Φ
decays sufficiently fast at infinity, but is not compactly supported.

Let η : R3 −→ R be a smooth function which satisfies 0 ≤ η ≤ 1 in R3, η ≡ 1 in B1(0),
and η ≡ 0 in R3 \ B2(0). For each s > 0, we set ηs(x) = η(s−1x), where x ∈ R. Under these
notations, we are ready to present the next two results.

Lemma 4.4. Let F : Π −→ R3 and G : Π × [0, T] −→ R3 be two smooth vector fields, with
F ∈ H1(Π). Also, suppose that there exist C > 0 and α > 0 such that

|G(x, t)| ≤ C
|x|α (4.5)

for all (x, t) ∈ (R3 \ {0})× [0, T]. The following properties hold:

(a) ‖ηsF− F‖H1(Π) → 0 as s→ ∞;

(b) If a ∈ (3, ∞], then ‖∇ηs‖La(Π) → 0 as s→ ∞;

(c) ‖∂iηsG(·, t)‖L2(Π) ≤ C
sα−1/2 for all t ∈ [0, T] and i ∈ {1, 2, 3};

(d) ‖∂2
ijηsG(·, t)‖L2(Π) ≤ C

sα+1/2 for all t ∈ [0, T] and i, j ∈ {1, 2, 3};

(e) If α > 3
2 , then ‖ηsG(·, t)− G(·, t)‖L2(Π) ≤ C

sα−3/2 for all t ∈ [0, T].

Proof. Take d > 0 such that Ω ⊂ Bd(0), where Π = R3 \Ω. In this proof, we will only consider
the functions ηs : R3 −→ R, with s ≥ d.

PART (a): It follows immediately from Lebesgue’s dominated convergence theorem.

PART (b): Let i ∈ {1, 2, 3}. If a ∈ (3,+∞), the desired convergence is a consequence of∫
Π
|∂iηs(x)|adx =

∫
R3

∣∣∣∂iη
( x

s

)∣∣∣a 1
sa dx =

1
sa−3 ‖∂iη‖a

La .

On the other hand, the estimate ‖∂iηs‖L∞(Π) ≤ C
s gives us the complete conclusion.

PARTS (c) and (d): Let us take t ∈ [0, T] and i, j ∈ {1, 2, 3}. Thus, using (4.5), we take

∫
Π
|∂iηs(x)G(x.t)|2dx =

∫
|x|∈[s,2s]

1
s2

∣∣∣∂iη
( x

s

)∣∣∣2 |G(x, t)|2dx

=
∫
|y|∈[1,2]

s |∂iη(y)|2 |G(sy, t)|2dy

≤ C
s2α−1

(∫
|y|∈[1,2]

|∂iη(y)|2dy
)
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and

∫
Π
|∂2

ijηs(x)G(x, t)|2dx =
∫
|x|∈[s,2s]

1
s4

∣∣∣∂2
ijη
( x

s

)∣∣∣2 |G(x, t)|2dx

=
∫
|y|∈[1,2]

1
s

∣∣∣∂2
ijη(y)

∣∣∣2 |G(sy, t)|2dy

≤ C
s2α+1

(∫
|y|∈[1,2]

|∂2
ijη(y)|2dy

)
.

PART (e): For the last estimate, we assume that α > 3/2. Once again, applying (4.5), we have

∫
Π
|ηs(x)G(x, t)− G(x, t)|2dx =

∫
|x|≥s

∣∣∣[η ( x
s

)
− 1
]

G(x, t)
∣∣∣2 dx

=
∫
|y|≥1
|η(y)− 1|2|G(sy, t)|2s3dy

≤ C
(2α− 3)s2α−3

for each t ∈ [0, T]. It concludes the proof.

The following result is the last one of this section. We emphasize that its content brings
the information that (4.4) holds for a larger class of test functions.

Proposition 4.5. Let Ψ̃ : R3 × [0, T] −→ R3 and F : R3 −→ R3 be two smooth vector fields
satisfying:

(a) supp(Ψ̃) ⊂ (R3 \ B̄)× [0, T], where B is an open ball containing Ω;

(b) F is divergence-free and supp(F) is a compact subset of Π;

(c) There exists C1 > 0 such that

|Ψ̃(x, t)| ≤ C1

|x| , |Ψ̃t(x, t)| ≤ C1

|x|2 and |∇Ψ̃(x, t)| ≤ C1

|x|2 , (4.6)

for all (x, t) ∈ (R3 \ {0})× [0, T].

Additionally, consider Φ̃ := curl(Ψ̃) + F and suppose that there exists C2 > 0 such that

|Φ̃(x, t)| ≤ C2

|x|2 , |Φ̃t(x, t)| ≤ C2

|x|3 and |∇Φ̃(x, t)| ≤ C2

|x|3 , (4.7)

for all (x, t) ∈ (R3 \ {0})× [0, T]. Then, a weak solution v of (4.1), with initial data v0 ∈ H(Π),
satisfies ∫

Π
(v · Φ̃)(x, t)dx−

∫
Π

v0(x) · Φ̃(x, 0)dx

=
∫ t

0

∫
Π
[v · Φ̃t − ν(∇v · ∇Φ̃) + (v · ∇)Φ̃ · v](x, τ)dτ. (4.8)
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Proof. As in the proof of Lemma 2.10, consider Π = R3 \Ω and take d > 0 such that Ω ⊂
Bd(0). For each s ≥ d, define Φs ∈ D(Π× [0, T)) given by

Φs := curl(ηsΨ̃) + F = ∇ηs × Ψ̃ + ηs curl Ψ̃ + F.

From (4.4), we obtain∫
Π
(v ·Φs)(x, t)dx−

∫
Π
(v ·Φs)(x, 0)dx

=
∫ t

0

∫
Π
[v · (Φs)t − ν(∇v · ∇Φs)− (v · ∇)v ·Φs](x, τ)dτ (4.9)

for all t ∈ [0, T).
Next, we fix t ∈ [0, T), in order to pass to the limit in (4.9) as s → ∞. Firstly, using (4.3)

and Lemma 4.4, we take∣∣∣∣∫Π
(v ·Φs)(x, t)dx−

∫
Π
(v · Φ̃)(x, t)dx

∣∣∣∣ ≤ ‖v(·, t)‖L2(Π)‖∇ηs × Ψ̃ + (ηs − 1) curl Ψ̃‖L2(Π)

≤
C‖v0‖L2(Π)

s1/2 (4.10)

and∣∣∣∣∫ t

0

∫
Π
(v · (Φs)t)dxdτ−

∫ t

0

∫
Π
(v · Φ̃t)dxdτ

∣∣∣∣≤∫ t

0

∫
Π
|v||∇ηs × Ψ̃t + (ηs − 1)(curl Ψ̃)t|(x, τ)dxdτ

≤ ‖v0‖L2(Π)

∫ t

0
(‖∇ηs × Ψ̃t‖L2(Π) + ‖(ηs − 1)(curl Ψ̃)t‖L2(Π))(τ)dτ

≤
CT‖v0‖L2(Π)

s3/2 . (4.11)

Likewise, using Lemma 4.4, (4.3) and

∂iΦs − ∂iΦ̃ = ∂i(∇ηs)× Ψ̃ +∇ηs × ∂iΨ̃ + (∂iηs) curl Ψ̃ + (ηs − 1)∂i(curl Ψ̃)

where i ∈ {1, 2, 3}, we obtain the estimate∣∣∣∣∫ t

0

∫
Π
(∇v · ∇Φs)(x, τ)dxdτ −

∫ t

0

∫
Π
(∇v · ∇Φ̃)(x, τ)dxdτ

∣∣∣∣
≤

3

∑
i=1

∫ t

0
‖∂iv(·, τ)‖L2(Π)‖(∂iΦs − ∂iΦ̃)(·, τ)‖L2(Π)dτ

≤
‖v0‖L2(Π)√

2ν

3

∑
i=1

(∫ t

0
‖(∂iΦs − ∂iΦ̃)(·, τ)‖2

L2(Π)dτ

)1/2

≤ C
s1/2 . (4.12)

To conclude the proof, we use∫ t

0

∫
Π
[(v · ∇)v] ·Φs(x.τ)dxdτ = −

∫ t

0

∫
Π
[(v · ∇)Φs] · v(x.τ)dxdτ,

as well as Lemma 4.4 and (4.3) in order to get
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∣∣∣∣∫ t

0

∫
Π
[(v · ∇)v] ·Φs(x.τ)dxdτ +

∫ t

0

∫
Π
[(v · ∇)Φ̃] · v(x.τ)dxdτ

∣∣∣∣
≤
∫ t

0

∫
Π
|v|2|∇Φs −∇Φ̃|2(x, τ)dxdτ

≤
∫ t

0
‖v(·, τ)‖2

L4(Π)‖(∇Φs −∇Φ̃)(·, τ)‖L2(Π)dτ

≤ C
s1/2

∫ t

0
‖v(·, τ)‖2

H1(Π)dτ

≤ C
s1/2 . (4.13)

Therefore, from (4.10), (4.11), (4.12) and (4.13), the relation (4.8) holds.

5 Proof of Theorem 1.1

This section is devoted to the main result of this paper. Let us recall its hypotheses:

• ω0 is a smooth, compactly supported and divergence-free vector field in R3;

• (u, p) is the smooth solution of (1.4), defined in R3 × (0, T), with initial data u0, as in
(1.3).

Taken T ∈ (0, T∗), R > 0 and ν > 0, we also consider:

• uR as defined in (3.2);

• v0,R is the L2-orthogonal projection of u0|ΠR on H(ΠR), mentioned in Proposition 3.4;

• vν,R is a weak solution of (4.1) in ΠR× [0, T), with initial data v0,R, given by Theorem 4.2.

Proof of Theorem 1.1. CLAIM: There exist C = C(T, Ω0, ω0) > 0 and R0 > 0 such that, if
R > R0, then

‖vν,R(·, t)− uR(·, t)‖2
L2(ΠR)

+ ν
∫ t

0
‖∇vν,R(·, τ)−∇uR(·, τ)‖2

L2(ΠR)
dτ ≤ C

(
1

R2 + ν

)
(5.1)

for almost every t ∈ [0, T]. As a consequence, Theorem 1.1 holds.

From now on, we will focus on the verification of (5.1). To do so, the main arguments used
below take into account those presented in [8]. Let us fix t ∈ [0, T]. From (4.3),

1
2
‖vν,R(·, t)‖2

L2(ΠR)
+ ν

∫ t

0
‖∇vν,R(·, τ)‖2

L2(ΠR)
dτ ≤ 1

2
‖v0,R‖2

L2(ΠR)
=

1
2
‖ṽ0,R‖2

L2(R3), (5.2)

where ṽ0,R equals v0,R on ΠR and vanishes otherwise.
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Next, due to (2.7) and (2.10), we can apply Proposition 4.5, with v = vν,R and Φ̃ = uR, in
order to obtain

−
∫

ΠR

(vν,R · uR)(x, t)dx +
∫

ΠR

(v0,R · uR)(x, 0)dx

= −
∫ t

0

∫
ΠR

[vν,R · uR
t − ν∇vν,R · ∇uR](x, τ)dxdτ −

∫ t

0

∫
ΠR

[(vν,R · ∇)uR] · vν,Rdxdτ

= −
∫ t

0

∫
ΠR

vν,R · [∇χR ×Ψt − χR(u · ∇)u− χR∇p](x, τ)dxdτ

+ ν
∫ t

0

∫
ΠR

(∇vν,R · ∇uR)(x, τ)dxdτ −
∫ t

0

∫
ΠR

[(vν,R · ∇)uR] · vν,R(x, τ)dxdτ

= −
∫ t

0

∫
ΠR

vν,R · [∇χR ×Ψt − χR∇p](x, τ)dxdτ + ν
∫ t

0

∫
ΠR

(∇vν,R · ∇uR)(x, τ)dxdτ

+
∫ t

0

∫
ΠR

[(χRu− uR)∇u] · vν,R(x, τ)dxdτ +
∫ t

0

∫
ΠR

[(uR · ∇)(u− uR)] · vν,R(x, τ)dxdτ

+
∫ t

0

∫
ΠR

[(vν,R − uR)∇uR] · (vν,R − uR)(x, τ)dxdτ. (5.3)

Besides, recalling that the kinetic energy E(t) = 1
2

∫
R3 |u(x, t)|2dx is a conserved quantity in

time, we also take

1
2
‖uR(·, t)‖2

L2(ΠR)
≤ 1

2
‖(∇χR × (Ψ + CR))(·, t)‖2

L2(ΠR)

+ ‖(∇χR × (Ψ + CR))(·, t)‖L2(ΠR)‖χ
Ru‖L2(ΠR) +

1
2
‖χRu(·, t)‖2

L2(ΠR)

≤ 1
2
‖(uR − χRu)(·, t)‖2

L2(ΠR)

+ ‖(uR − χRu)(·, t)‖L2(ΠR)‖χ
Ru‖L2(ΠR) +

1
2
‖u0‖2

L2(R3). (5.4)

As a result, from (5.2), (5.3) and (5.4) , we conclude that

1
2
‖vν,R − uR‖2

L2(ΠR)
+ ν

∫ t

0
‖(∇vν,R −∇uR)(·, τ)‖2

L2(ΠR)
dτ

≤
[

1
2
‖ṽ0,R − u0‖2

L2(R3) +
∫

ΠR

v0,R · (u0 − uR)(x, 0)dx
]

−
[ ∫ t

0

∫
ΠR

vν,R · (∇χR ×Ψt − χR∇p)(x, τ)dxdτ

]
+ ν

[ ∫ t

0
‖∇uR‖2

L2(ΠR)
−
∫ t

0

∫
ΠR

(∇vν,R · ∇uR)(x, τ)dxdτ

]
+

[ ∫ t

0

∫
ΠR

[(χRu− uR)∇u] · vν,R(x, τ)dxdτ +
∫ t

0

∫
ΠR

[(uR · ∇)(u− uR)] · vν,R(x, τ)dxdτ

]
+

[ ∫ t

0

∫
ΠR

[(vν,R − uR)∇uR] · (vν,R − uR)(x, τ)dxdτ

]
+

[
1
2
‖(uR − χRu)(·, t)‖2

L2(ΠR)
+ ‖(uR − χRu)(·, t)‖L2(ΠR)‖χ

Ru‖L2(ΠR)

]
=: A1 + A2 + A3 + A4 + A5 + A6. (5.5)
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Firstly, using Proposition 3.3(d), we easily get

|A5| ≤ C
∫ t

0
‖vν,R − uR‖2

L2(ΠR)
(x, τ)dτ.

Likewise, A6 was completely analyzed in Proposition 3.3(a). Thus, in the rest of this proof, we
will estimate each Ai, with i ∈ {1, 2, 3, 4}, in terms of R > 0 and ν > 0.

To see that
|A1| ≤

C
R2 ,

we just apply Propositions 3.3(a) and 3.4. In fact, observe that∫
ΠR

v0,R · (u0 − uR)(x, 0)dx ≤ ‖v0,R‖L2(ΠR)‖(u0 − uR)(·, 0)‖L2(ΠR)

≤ ‖u0‖L2(R3)‖(u0 − uR)(·, 0)‖L2(ΠR)

≤ C
R2 ,

and recall (3.9).
Next, using the relation

−
∫ t

0

∫
ΠR

vν,R · (χR∇p)dxdτ =
∫ t

0

∫
ΠR

vν,R · (p∇χR)dxdτ,

and Proposition 3.3(c), we obtain

|A2| =
∣∣∣∣∫ t

0

∫
ΠR

vν,R · (∇χR ×Ψt + p∇χR)(x, τ)dxdτ

∣∣∣∣
≤
∫ t

0
‖vν,R‖L2(ΠR)(‖∇χR ×Ψt‖L2(ΠR) + ‖p∇χR‖L2(ΠR))(·, τ)dxdτ

≤ T‖v0,R‖L2(ΠR)(‖∇χR ×Ψt‖L∞([0,T];L2(ΠR)) + ‖p∇χR‖L∞([0,T];L2(ΠR)))

≤
CT‖u0‖L2(R3)

R2 .

Besides, using Young’s inequality and Proposition 3.3(d), we can easily check that

|A3| =
∣∣∣∣ν ∫ t

0

∫
ΠR

∇uR · (∇uR − vν,R)(x, τ)dxdτ

∣∣∣∣
≤ ν

2

∫ t

0
‖∇uR‖2

L2(ΠR)
(τ)dτ +

ν

2

∫ t

0
‖∇vν,R −∇uR‖2

L2(ΠR)
(τ)dτ

≤ Cν +
ν

2

∫ t

0
‖∇vν,R −∇uR‖2

L2(ΠR)
(τ)dτ.

At last, the estimate

|A4| ≤
∫ t

0
‖χRu− uR‖L2(ΠR)‖∇u‖L∞(ΠR)‖v

ν,R‖L2(ΠR)dτ

+
∫ t

0
‖uR‖L∞(ΠR)‖∇uR −∇u‖L2(ΠR)‖v

ν,R‖L2(ΠR)dτ

≤ CT
R2

comes from Theorem 4.2 and Proposition 3.3(a),(b),(d).
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Therefore, there exist K > 0 and L > 0, independent of time t, such that

1
2
‖vν,R(·, t)− uR(·, t)‖2

L2(ΠR)
+

ν

2

∫ t

0
‖∇vν,R −∇uR‖2

L2(ΠR)
(τ)dτ

≤ K
(

1
R2 + ν

)
+ L

∫ t

0
‖vν,R − uR‖2

L2(ΠR)
(τ)dτ

for any t ∈ [0, T]. Thus, the integral form of Gronwall’s inequality allows us to achieve the
estimate (5.1) .

6 Some additional comments

1. In order to obtain Proposition 3.4, the circulation of the velocity on the boundary ΓR is
not required, since each ΠR is a 3D simply connected domain.

2. In this paper, we deal with three-dimensional incompressible flows, with small viscos-
ity, around distant obstacles. Perhaps, the analogous two-dimensional case can also be
studied. To be more precise, let U0 ⊂ R2 be a smooth bounded domain, which is also
connected and simply connected. For each R ≥ 0, let us set

UR = U0 + (R, 0), VR = R2 \ UR and CR = ∂UR = ∂ΠR.

Let us consider ω0 ∈ C∞
c (R2) and γ ∈ R, which are both independent of R > 0. Set

y0,R = KR[ω
0] + (γ + m)HR,

where m =
∫

R2 ω0dx, KR[ω
0] = KR[ω

0](x) is the Biot–Savart operator in VR and HR =

HR(x) is the generator of the harmonic vector fields in VR. Thanks to Lemma 2.2 and
Proposition 2.1 of [7], for each R > 0, we have

div y0,R = 0, in VR,

curl y0,R = ω0, in VR,

y0,R · n̂ = 0, on CR,

|y0,R(x)| → 0, as |x| → +∞,∫
CR

u0,R · ds = γ.

Thus, it would be very nice to understand the asymptotic behavior of the family of 2D
incompressible flows, with small viscosity, around distant obstacles, governed by


yν,R

t + (yν,R · ∇)yν,R − ν∆yν,R +∇πν,R = 0, (x, t) ∈ VR × (0, T),

div yν,R = 0, (x, t) ∈ VR × [0, T),

yν,R(x, t) = 0, (x, t) ∈ CR × (0, T),

yν,R(x, 0) = y0,R(x), x ∈ VR.

(6.1)

It means that we have fixed ω0 as an initial vorticity and γ as the circulation of the initial
flow around each obstacle UR. We should notice that y0,R ∈ L2,∞(ΠR), but y0,R /∈ L2(ΠR).
In this case, it seems to us that Kato’s argument can not be applied following the same
structure of the proof of Theorem 1.1. However, another approach may work if we take
mild solutions of (6.1), obtained [11].
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3. In order to simplify calculations and estimates, we have considered material obstacles
of the form ΩR = Ω0 + R = Ω0 + R1, where 1 = (1, 0, 0). However, our main result
remains valid if we replace ΩR by Ω0 + R~z, for each R > 0, where ~z is another unit
vector in R3.

4. We believe that Theorem 1.1 is related to that one obtained in [10], in the three-
dimensional case. Let Ω0 ⊂ R3 be a smooth and simply connected bounded domain
Ω0 ⊂ R3. In that work, the authors started with a smooth initial vorticity ω0 ∈ C∞

c (R3),
which is divergence-free and, for each L > 0, they took uL

0 as the unique divergence-free
vector field in ΩL = LΩ0 that is tangent to ∂ΩL and has a curl equal to ω0 in ΩL. At this
point, they studied the limiting behavior of a family

{uν,L : ν > 0 and L > 0},

consisting of weak solutions to the Navier–Stokes system


uν,L

t + (uν,L · ∇)uν,L − ν∆uν,L +∇πν,L = 0, (x, t) ∈ ΩL × (0, T),

div uν,L = 0, (x, t) ∈ ΩL × [0, T),

uν,L(x, t) = 0, (x, t) ∈ ∂ΩL × (0, T),

uν,L(x, 0) = uL
0 (x), x ∈ ΩL.

(6.2)

Summarizing, it is proved in Theorem 1.2 of [10] that

‖uν,L − u‖L∞([0,T];L2(ΩL)) ≤
[

C
(

ν +
1√
L

)
+ ‖uL

0 − u0‖L2(ΩL)

]
eCT, (6.3)

where u = u(x, t) is a smooth solution to (1.4), with initial data u0, given in (1.3). Above,
we observe that

‖uL
0 − u0‖L2(ΩL) ≤ CL−1/2,

which allows us to contrast the current main result of this paper with (6.3). In both
cases, there are results for 3D incompressible flows, with small viscosity, in domains
with distant boundaries. Thus, it seems to us that the rates of convergence

R−1 and L−1/2

on the right side of (1.6) and (6.3), respectively, suggest that the boundary ΓR = ∂ΠR,
in (1.5), produces a bigger effect in the vanishing viscosity limit, when compared to the
same effect produced by ∂ΩL, in (6.2).
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Appendix: List of notations

This appendix reunites some notations and definitions that we have used in the previous
sections. Our purpose here is to become the reading of this article easier.
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Domains

• Ω0 ⊂ R3 be a smooth bounded domain, such that R3 \ Ω0 is connected and simply
connected;

• For each R ≥ 0,

R := (R, 0, 0), ΩR := Ω0 + R, ΠR := R3 \ΩR and ΓR := ∂ΩR = ∂ΠR.

Operators

For a smooth vector field F = (F1, F2, F3) in R3, we denote:

• div F := ∂1F1 + ∂2F2 + ∂3F3;

• curl F := (∂2F3 − ∂3F2, ∂3F1 − ∂1F3, ∂1F2 − ∂2F1);

• (F · ∇)F := F1∂1F + F2∂2F + F3∂3F.

Function spaces

Given an open set O ⊂ R3 and a function f : O −→ R, the support of f is the closed set

supp f := {x ∈ O : f (x) 6= 0}.

Under these notations,

• L2,∞(O) denotes the Lorentz space of f satisfying sups>0 As < +∞, where

As := s2µ({x ∈ O : | f (x)| > s})

and µ is the Lebesgue measure in R3.

• C∞
c (O) denotes the space of all infinitely differentiable real functions with compact sup-

port in O;

• D(O) := {Ψ ∈ (C∞
c (O))3 : div Ψ = 0 in O};

• V(O) := {Ψ ∈ (H1(O))3 : div Ψ = 0 in O and u = 0 on ∂O};

• H(O) := {Ψ ∈ (L2(O))3 : div Ψ = 0 in O and Ψ · n = 0 on ∂O}, where n is the outward
directed unit normal vector field to ∂O;

• Given T > 0, DT(O) denotes the set of all ϕ ∈ (C∞
c (O × [0, T)))3 such that

divx ϕ(x, t) := ∂1ϕ1 + ∂2ϕ2 + ∂3ϕ3 = 0 in Π× [0, T).

Solutions and initial data

• ω0 ∈ D(R3) denotes a fixed initial vorticity;

• u0 represents the velocity defined on R3, associated to the vorticity ω0, as in (1.3);

• (u, p) denotes a smooth solution of (1.4), with initial data u0;

• (v, P) denotes a Leray–Hopf solution of (4.1);

• Given R > 0 and ν > 0, (vν,R, Pν,R) denotes a Leray–Hopf solution of (1.5).
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