Breda Dimitri; Diekmann Odo; Liessi Davide; Scarabel Francesca: Numerical bifurcation analysis of a class of nonlinear renewal equations. (2016)
Előnézet |
Teljes mű
ejqtde_spec_002_2016_065.pdf Letöltés (957kB) | Előnézet |
Absztrakt (kivonat)
We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic- and Ricker-type population equations and exhibits transcritical, Hopf and period doubling bifurcations. The reliability is demonstrated by comparing the results to those obtained by a reduction to a Hamiltonian Kaplan–Yorke system and to those obtained by direct application of collocation methods (the latter also yield estimates for positive Lyapunov exponents in the chaotic regime). We conclude that the methodology described here works well for a class of delay equations for which currently no tailor-made tools exist (and for which it is doubtful that these will ever be constructed).
Mű típusa: | Folyóirat |
---|---|
Egyéb cím: | Honoring the career of Tibor Krisztin on the occasion of his sixtieth birthday |
Folyóirat/könyv/kiadvány címe: | Electronic journal of qualitative theory of differential equations : special edition |
Dátum: | 2016 |
Kötet: | 2 |
Szám: | 65 |
ISSN: | 1417-3875 |
Oldalszám: | 24 |
Nyelv: | angol |
DOI: | 10.14232/ejqtde.2016.1.65 |
Kulcsszavak: | Differenciálegyenlet, Bifurkáció |
Megjegyzések: | Bibliogr.: p. 20-24. ; összefoglalás angol nyelven |
Feltöltés dátuma: | 2021. nov. 11. 12:25 |
Utolsó módosítás: | 2021. nov. 12. 09:42 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73732 |
Tétel nézet |