Numerical bifurcation analysis of a class of nonlinear renewal equations

Breda Dimitri; Diekmann Odo; Liessi Davide; Scarabel Francesca: Numerical bifurcation analysis of a class of nonlinear renewal equations. (2016)

[thumbnail of ejqtde_spec_002_2016_065.pdf]
Előnézet
Teljes mű
ejqtde_spec_002_2016_065.pdf

Letöltés (957kB) | Előnézet

Absztrakt (kivonat)

We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic- and Ricker-type population equations and exhibits transcritical, Hopf and period doubling bifurcations. The reliability is demonstrated by comparing the results to those obtained by a reduction to a Hamiltonian Kaplan–Yorke system and to those obtained by direct application of collocation methods (the latter also yield estimates for positive Lyapunov exponents in the chaotic regime). We conclude that the methodology described here works well for a class of delay equations for which currently no tailor-made tools exist (and for which it is doubtful that these will ever be constructed).

Mű típusa: Folyóirat
Egyéb cím: Honoring the career of Tibor Krisztin on the occasion of his sixtieth birthday
Folyóirat/könyv/kiadvány címe: Electronic journal of qualitative theory of differential equations : special edition
Dátum: 2016
Kötet: 2
Szám: 65
ISSN: 1417-3875
Oldalszám: 24
Nyelv: angol
DOI: 10.14232/ejqtde.2016.1.65
Kulcsszavak: Differenciálegyenlet, Bifurkáció
Megjegyzések: Bibliogr.: p. 20-24. ; összefoglalás angol nyelven
Feltöltés dátuma: 2021. nov. 11. 12:25
Utolsó módosítás: 2021. nov. 12. 09:42
URI: http://acta.bibl.u-szeged.hu/id/eprint/73732
Bővebben:
Tétel nézet Tétel nézet