Mean-field approximation of counting processes from a differential equation perspective

Kunszenti-Kovács Dávid; Simon Péter L.: Mean-field approximation of counting processes from a differential equation perspective. (2016)

[thumbnail of ejqtde_spec_002_2016_075.pdf]
Előnézet
Teljes mű
ejqtde_spec_002_2016_075.pdf

Letöltés (447kB) | Előnézet

Absztrakt (kivonat)

Deterministic limit of a class of continuous time Markov chains is considered based purely on differential equation techniques. Starting from the linear system of master equations, ordinary differential equations for the moments and a partial differential equation, called Fokker–Planck equation, for the distribution is derived. Introducing closures at the level of the second and third moments, mean-field approximations are introduced. The accuracy of the mean-field approximations and the Fokker–Planck equation is investigated by using two differential equation-based and an operator semigroup-based approach.

Mű típusa: Folyóirat
Egyéb cím: Honoring the career of Tibor Krisztin on the occasion of his sixtieth birthday
Folyóirat/könyv/kiadvány címe: Electronic journal of qualitative theory of differential equations : special edition
Dátum: 2016
Kötet: 2
Szám: 75
ISSN: 1417-3875
Oldalszám: 17
Nyelv: angol
DOI: 10.14232/ejqtde.2016.1.75
Kulcsszavak: Differenciálegyenlet
Megjegyzések: Bibliogr.: p. 16-17. ; összefoglalás angol nyelven
Feltöltés dátuma: 2021. nov. 11. 13:54
Utolsó módosítás: 2021. nov. 12. 09:42
URI: http://acta.bibl.u-szeged.hu/id/eprint/73742
Bővebben:
Tétel nézet Tétel nézet