Walther Hans-Otto: Local invariant manifolds for delay differential equations with state space in C1((−∞, 0], R n). (2016)
Előnézet |
Teljes mű
ejqtde_spec_002_2016_085.pdf Letöltés (501kB) | Előnézet |
Absztrakt (kivonat)
Consider the delay differential equation x 0 (t) = f(xt) with the history xt : (−∞, 0] → Rn of x at ‘time’ t defined by xt(s) = x(t + s). In order not to lose any possible entire solution of any example we work in the Fréchet space C 1 ((−∞, 0], Rn with the topology of uniform convergence of maps and their derivatives on compact sets. A previously obtained result, designed for the application to examples with unbounded state-dependent delay, says that for maps f which are slightly better than continuously differentiable the delay differential equation defines a continuous semiflow on a continuously differentiable submanifold X ⊂ C 1 of codimension n, with all time-t-maps continuously differentiable. Here continuously differentiable for maps in Fréchet spaces is understood in the sense of Michal and Bastiani. It implies that f is of locally bounded delay in a certain sense. Using this property – and a related further mild smoothness hypothesis on f – we construct stable, unstable, and center manifolds of the semiflow at stationary points, by means of transversality and embeddings.
Mű típusa: | Folyóirat |
---|---|
Egyéb cím: | Honoring the career of Tibor Krisztin on the occasion of his sixtieth birthday |
Folyóirat/könyv/kiadvány címe: | Electronic journal of qualitative theory of differential equations : special edition |
Dátum: | 2016 |
Kötet: | 2 |
Szám: | 85 |
ISSN: | 1417-3875 |
Oldalszám: | 29 |
Nyelv: | angol |
DOI: | 10.14232/ejqtde.2016.1.85 |
Kulcsszavak: | Differenciálegyenlet - késleltetett |
Megjegyzések: | Bibliogr.: p. 28-29. ; összefoglalás angol nyelven |
Feltöltés dátuma: | 2021. nov. 11. 15:18 |
Utolsó módosítás: | 2021. nov. 12. 09:42 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73752 |
![]() |
Tétel nézet |